建设项目环境影响报告表

项目名称: 中行吉林省分行培训中心(党校)与档案管理中心一期 锅炉建设项目

建设单位(盖章): 中国银行股份有限公司吉林省分行

编制日期: 2019年7月

nuning mendenden der bereitet bereitet bereitet bereitet bereitet bereitet bereitet bereitet bereitet bereitet

曹业执规照

(副 本)

1-1

统一社会俱用代码 912201017868329163

名 称 吉林省龙桥辐射环境美和有限公司

类型有限责任公司(自然火投资或控股)

住 所 高新区CBD 图 210 18806室

法定代表人 赵晨光

注册资本 章原酒幣件二

成立日期 2008年05月10期 印尤公

营业期限 长期

经营范围建设项目环境影响评价、辐射项目可行性研究及工程设施工程设计及施工(以上经营范围凭资质经

计、环境保护工程设计及施工(以上经营范围凭资质经营);环保设备销售;环境工程总承包;环境保护咨询、服务;环境保护设施调试、监测、试验;环境监测(凭相关许可证开展经营活动)(依法须经批准的项目,经相关

部门批准后方可开展经营活动)

登记机关

年 月 日 2018 06 25

排证人签名: Signature of the Bearer

管理号: 06352223506220153 File No.:

Approval Date 2006年5月14日

签发单位盖章: Issued by

签发日期: Issued on

8 J 15 B

2006年

证明编号: 20190613019911336333

个人参保证明

个人基本信息

姓 名	孙辅俊	证件类型	居民身份证	证件号码	220403196006223918
性 别	男	出生日期	1960-06-22	个人编号	3000343179
状 态	状 态 在职 养老缴费状态		正常缴费	失业缴费状态	正常缴费
原所在单位	立/当前所在单位	吉林名	省龙桥辐射环境工程有限	公司/吉林省龙	桥辐射环境工程有限公司

参保缴费情况

险 种	参保时间	缴费截止时间	实际缴费月数
养老保险	1995-01-01	201905	288
失业保险	1995-01-01	201905	180

【温馨提示】

- 1、以上信息均截止到打印日期为止。
- 2、缴费及待遇领取详细信息请登录长春市社会保险事业管理局(www.ccshbx.org.cn)
- 3、此表可以通过移动终端扫描二维码或登录以上网站验证区输入表格编号验证真伪。

建设项目基本情况

项目名称	中行吉林省分行培训中心(党校)与档案管理中心一期锅炉 建设项目							
建设单位		中	国银行	股份	有限公	司吉林省	分行	
法人代表	E	三果		联	系人		何经3	里
通讯地址			长	春市國	5安大	路 699 号		
联系电话	17519118	17519118139 传真 邮政编码 130			130000			
建设地点	长春	序净月高	新技术	产业别	干发区	聚业大街与	可永顺路 交	だに处
立项审批部门			扎	北准文	:号			
建设性质	改扩	建	行业	行业类别及代码		31	31 热力生产及供应业	
占地面积 (平方米)	50		绿化面积 (平方米)					
总投资 (万元)	200		中: 环位 (万元	-	2	1	b资占总 比例	1%
评价经费 (万元)		预期]投产日	期	2019年10月			

1. 项目由来

根据中国银行总行区域培训中心相关要求和中国银行股份有限公司吉林省分行人员培训、档案管理、会议等工作实际要求,中国银行股份有限公司吉林省分行在长春净月高新技术产业开发区聚业大街与永顺路交汇处购地一处,占地面积 48440㎡, 2012年委托吉林大学编制《中行吉林省分行培训中心(党校)与档案管理中心一期建设项目》,长春市环境保护局净月高新技术产业开发区分局以《关于中行吉林省分行培训中心(党校)与档案管理中心一期建设项目环境影响报告表的批复》(长环净建(表)【2012】63号)同意项目的实施建设。

中行吉林省分行培训中心(党校)与档案管理中心一期目前已经完成楼宇建设, 处于室内装修和设备安装调试阶段,为了保证更好的供暖条件,其将原已审批的3台2t/h燃气锅炉,更换为2台3t/h燃气锅炉和2台1t/h燃气锅炉,其更换锅炉未履行环评手续,且尚未投入使用。

根据生态环境部办公厅 2019 年 5 月 22 日印发的《关于进一步规范适用环境行政 处罚自由裁量权的指导意见》,中行吉林省分行培训中心(党校)与档案管理中心一 期属于免于处罚情形,即:违法行为(如"未批先建")未造成环境污染后果,且企 业自行实施关停或者实施停止建设、停止生产等措施。

根据《环境影响评价法》(2016. 9. 1)、《建设项目环境保护管理条例》(国务院令第 682 号)本项目应编制环境影响报告,依据《建设项目环境影响评价分类管理名录》(环保部第 44 号)及《关于修改《建设项目环境影响评价分类管理名录》部分内容的决定》(部令第 1 号)中的有关规定,本项目属于"31 热力生产及供应业(其他)",应为环境影响报告表,另外根据《环境影响评价技术导则—地下水环境》(HJ610-2016),项目为IV类项目,不开展地下水环境影响评价。

2. 编制依据

2.1 法律、法规及有关文件

- (1)《中华人民共和国环境保护法》(2015.1.1);
- (2)《中华人民共和国环境影响评价法》(2018.12.29);
- (3)《中华人民共和国大气污染防治法》(2018.10.26 修改);
- (4)《中华人民共和国水污染防治法》(2017.6.23 修改);
- (5)《中华人民共和国环境噪声污染防治法》(2018.12.29 修改):
- (6)《中华人民共和国固体废物污染环境防治法》(2016.11.7);
- (7)《建设项目环境保护管理条例》(国务院令第682号);
- (8)《国家发展改革委关于修改〈产业结构调整指导目录(2011 年本)(2013 年修正)〉有关条款的决定》(2013. 2. 16);
- (9)《环境空气细颗粒物污染防治技术政策》(环境保护部 公告 2013 年第 59 号) (2013. 9. 13);
- (II)《吉林省政府关于印发吉林省落实大气污染防治行动计划实施细则的通知》(吉政发「2013]31号):
- (II)《吉林省人民政府办公厅关于印发吉林省落实水污染防治行动计划工作方案的通知》(吉政办发[2015]72号);
- (②)《吉林省人民政府关于印发吉林省落实打赢蓝天保卫战三年行动计划实施方案的通知》(吉政发[2018]15号);
 - (3)《吉林省环境保护"十三五"规划(2016-2020年)》(吉政办发(2017)7号):
 - (4)《吉林省清洁水体行动计划(2016-2020年)》(吉政发[2016]22号):

- (5)《吉林省清洁空气行动计划(2016-2020年)》(吉政发[2016]23号);
- (16)《吉林省清洁土壤行动计划(2016-2020年)》吉政发[2016]40号;
- (17)《吉林省地表水功能区》(DB22/388-2004);
- (18)《长春市人民政府办公厅关于印发长春市规划区环境空气质量功能区划分规定的通知》(长府办发(2018)41号);
- (19)《长春市人民政府办公厅关于印发长春市声环境功能区划分规定的通知》(长府办发〔2018〕40号)。

2.2 导则、规范

- (1)《建设项目环境影响影响评价技术导则一总纲》(HJ2.1-2016);
- (2)《环境影响评价技术导则—大气环境》(HJ2.2-2018);
- (3)《环境影响评价技术导则一地表水环境》(HJ2. 3-2018);
- (4)《环境影响评价技术导则一声环境》(HJ2.4-2009);
- (5)《建设项目环境风险评价技术导则》(HJ169-2018):
- (6)《污染源源强核算技术指南-锅炉》(HT991-2018)。

2.3 项目文件及资料

- (1)《中行吉林省分行培训中心(党校)与档案管理中心一期建设项目环境影响报告表》吉林大学编制;
- (2)《关于中行吉林省分行培训中心(党校)与档案管理中心一期建设项目环境影响报告表的批复》(长环净建(表)【2012】63号);
 - (3)建设单位提供的与本项目相关的资料。

3. 项目概况

项目名称:中行吉林省分行培训中心(党校)与档案管理中心一期锅炉建设项目

项目性质: 改扩建

建设单位:中国银行股份有限公司吉林省分行

项目投资: 总投资 200 万元

4. 地理位置与周围敏感点

中行吉林省分行培训中心(党校)与档案管理中心一期建设项目位于长春净月高新技术产业开发区聚业大街与永顺路交汇处,占地面积为48440m²,建筑面积32700m²,

其中地上建筑面积 26341m², 半地下建筑面积 6359m², 绿化率 49.4%。

中行吉林省分行培训中心(党校)与档案管理中心一期建设项目东侧隔聚业大街为启明花园三期;南侧为在建工地,再向南为华润净月台;西侧为空地;北侧隔永顺路为再在建工地,在向北为晟鑫康诗丹郡。此次所涉及的锅炉位于中行吉林省分行培训中心(党校)与档案管理中心一期建设项目所建综合楼地下室内,建筑面积约为50m²,综合楼位于中行吉林省分行培训中心(党校)与档案管理中心一期建设项目的中心位置。本项目地理位置详见附图1,周围环境情况详见附图2。

5. 建设规模及主要工程内容

本项目改扩建内容是将原采暖和热水供应的 3 台 2t/h 燃气锅炉,更换为 2 台 3t/h 燃气锅炉和 2 台 1t/h 燃气锅炉用于采暖和热水供应,不新建建构物,本项目主要工程内容见表 1。

项目类别	建设内容	建设性质	设计能力
主体工程	2 台 3t/h 燃气 锅炉和 2 台 1t/h 燃气锅炉	改扩建	2 台 3t/h 燃气锅炉用于供暖,供热面积约为 32700m², 2 台 1t/h 燃气锅炉用于中心的热水供应, 4 台锅炉均位于综合楼地下室内,锅炉房建筑面积 约为 50m²
	给水	利旧	市政供水
公用工程	供暖	改扩建	由此次新建的2台3t/h燃气锅炉作为冬季采暖热源
	供电	利旧	由当地供电所提供电源
储运工程	燃气管线	利旧	由临近的市政燃气管网提供
辅助工程	/	/	/
环伊丁和	噪声	利旧	产噪设备均安装在室内,采取隔声、减振措施
环保工程	锅炉烟气	利旧	直排,通过已设置的 27m 高排气筒排放

表 1 项目组成一览表

6. 主要设备和原辅材料

本项目为 FB-H2. 1 型 3t/h 燃气锅炉 2 台,FB-H0. 76 型 1t/h 燃气锅炉 2 台,及相应辅机。

根据业主提供资料 2 台 3t/h 燃气锅炉用气量约为 50m^3 /h, 2 台 1t/h 燃气锅炉用气量 2m^3 /h。以燃气锅炉采暖时间 180 天每天 24h 计,2 台 3t/h 燃气锅炉用气量为 216000m^3 /a,以全年提供热水 300 天每天 24h 计,2 台 1t/h 燃气锅炉用气量为 14400m^3 /a,

综上预计本项目全年总的最大用气量约为 230400m³/a, 所使用燃气由临近的市政燃气管网提供,直接引入不设置储气罐,可满足使用需求。

7. 公用工程

供电:供电由现有的城镇电网供给,可满足项目用电量。

供热: 本项目所改扩建的 2 台 3t/h 燃气锅炉提供中行吉林省分行培训中心(党校)与档案管理中心的采暖热源,采暖面积合计约为 32700m²。

给水:本项目不新增职工,根据锅炉生产单位制造经验,本项目所使用的锅炉蒸发量相对较小,运行过程中结垢情况不会影响锅炉运行,不需软化水,仅需锅炉补充水使用,预计锅炉补充水水量约为 2m³/d。

8. 劳动定员及工作制度

本项目不新增职工,锅炉所需要人员由中心内员工内部调剂,其中2台用于采暖的3t/h燃气锅炉使用天数为180天,每天24小时运行,2台用于提供热水的1t/h燃气锅炉使用天数为300天,每天24小时运行。

9. 项目总投资

本项目总投资为200万元,全为企业自筹。

与本项目有关的原有污染情况及主要环境问题

中行吉林省分行培训中心(党校)与档案管理中心一期建设项目位于长春净月高新技术产业开发区聚业大街与永顺路交汇处。占地面积为48440m²,建筑面积32700m²,其中地上建筑面积26341m²,半地下建筑面积6359m²,绿化率49.4%。工程总投资24439.36万元。

其 2012 年委托吉林大学编写的《中行吉林省分行培训中心(党校)与档案管理中心一期建设项目环境影响报告表》,长春市环境保护局净月高新技术产业开发区分局 2012 年 11 月 24 日完成对该项目的审批,批号长环净建(表)[2012]63 号。

其目前已基本完成主体工程建设, 处于室内装修和设备调试阶段。

项目实际建设与环评阶段建设内容对比情况见表 2。

表 2 实际建设与环评阶段建设内容对比情况 建筑面积单位: п²

	环评阶	段建设内容	实际已建设内容						
类型	建筑物名称	建筑面积	楼数	层数	类型	建筑物名称	建筑面积	楼数	层数
	档案楼	6948	2	4		档案楼	6948	2	4
		大堂 1135	/	/			大堂 1135	/	/
		会议区 1489	2	3-4			会议区 1489	2	3-4
地上	会议教学文 体餐饮宿舍 综合楼	教学区 5164	2	3-4	地上		教学区 5164	2	3-4
建筑		文体区 2806	/	/	建筑		文体区 2806	/	/
		餐饮区 2104	/	/			餐饮区 2104	/	/
		宿舍 1781	2	3-4			宿舍 1781	2	3-4
	宿舍楼	4914	2	3-4		宿舍楼	4914	2	3-4
	设备间	1514	/	/		设备间	1514	/	/
半地工建	游泳区	1320	/	/	半地	游泳区	1320	/	/
下建 筑	餐饮后勤	738	/	/	下建 筑	餐饮后勤	738	/	/
	综合配套区	2787	/	/		综合配套区	2787	/	/

项目现有的公用工程情况:

(1)给水

给水管网由临近市政供水管网提供,可满足使用需求。

(2)排水

采用雨污分流,污水通过市政污水管网排入东南污水处理中心,由其处理达标后排入伊通河。

(3)供热

使用 2 台 3t/h 燃气锅炉和 2 台 1t/h 燃气锅炉用于供暖和热水供应,气源为临近市政燃气管网接入。

(4)供电

本项目用电由当地供电所统一供给,能够满足本项目用电需要。

由于项目已完成主体工程建设,且未投入运营,故仅对施工期环境影响进行回顾:施工过程已采取围挡措施,降低扬尘影响;施工过程中所产生的挖方已用于中心院内绿化,没有弃土;施工过程中对噪声设备也采取了减振降噪措施;施工过程中产生的污废水进入临近的市政管网,无随意散排发生,整个主体施工过程中无环境投诉事件发生。

《中行吉林省分行培训中心(党校)与档案管理中心一期建设项目环境影响报告表》(长环净建(表)[2012]63号)执行情况见表3。

表 3 环评批复执行情况

序号	长环净建(表)【2012】63号	落实情况
1	冬季取暖及生活热水等同意安装3台 2吨/小时燃气锅炉,锅炉烟气须达标排放	实际采取了 2 台 3t/h 燃气锅炉用于冬季采暖; 2 台 1t/h 燃气锅炉用于热水供应,但未投入运营且此次正在办理环评手续,符合《关于进一步规范适用环境行政处罚自由裁量权的指导意见》中免于处罚情形,即:违法行为(如"未批先建")未造成环境污染后果,且企业自行实施关停或者实施停止建设、停止生产等措施。
2	食 堂 废 水 须 经 隔 油 处 理 满 足 CJ3082-1999《污水排入城市下水道水质 标准》排入市政排水管网	已安装隔油装置,并接入市政污水管网
3	食堂油烟须经净化处理满足	食堂设备已安装完成,安装有油烟净化

	GB18483-2001《饮食业油烟排放标准》经	装置,并设置了独立的排烟道
	独立排烟道高空排放	
4	固体废物须分类收集,妥善外运处	己在院内防治垃圾分类收集装置,避免
4	理,避免造成二次污染	二次污染
	对风机等噪声源须采取降噪、建噪措	项目目前处于室内装修和设备调试阶
5	施, 使厂界噪声满足 GB12348-2008《工业	段,风机等设备已安装了减振降噪措施
	企业厂界环境噪声排放标准》1类标准	权,风机寺以备口女教] 减派阵柴油ル

建设项目所在地自然环境、社会环境简况

自然环境简况(地形、地貌、地质、气候、气象、水文、植被、生物多样性等)

1. 地理位置

长春市位于北半球中纬度地带,欧亚大陆的中国东北大平原的腹地,地理坐标为东经 125°12′-125°16′,北纬 43°46′-43°59′之间,市区设朝阳、南关、宽城、二道、绿园、双阳 6 个城区及经济技术开发区、高新技术产业开发区、净月潭旅游经济开发区三个开发区,另辖榆树市、九台市、德惠市和农安县 4 县(市)。

本项目位于中行吉林省分行培训中心(党校)与档案管理中心综合楼地下室内。 项目地理位置见附图 1。

2. 气象气候

长春市的气候属于欧亚大陆东部中温带大陆性半湿润季风气候,春季干燥多风,夏季炎热多雨,秋季雨少降温快,冬季干冷漫长,年平均气温为 4.8 °C,11 月到 3 月为封冻期,低温、干燥、寒冷。1 月份最冷,平均气温为-16.4 °C,极端最低气温-39.8 °C,地下冻结深度平均达 1.8 m; 4 -5 月多风沙,温度变化大,无雨期较长,常有旱情;7月份最热,平均气温 22.7 °C。极端最高气温 39.5 °C。平均初霜期为 10 月 5 日,最早年份在 9 月 7 日,最晚年份在 10 月 9 日;年平均无霜期为 140 -150 d 左右,最短年份 125 d,最长年份 177 d,终霜出现在 5 月上旬。全年采暖期 155 d。

长春市平均降水量为 522—615mm, 六十年代平均为 576.3mm, 七十年代平均为 553.2mm, 八十年代平均为 586.1mm, 到九十年代已增加到 622mm; 年际变量,最少年份平均为 369.9mm,最多年份平均可达 667.9mm; 年内变量,春季 12%、厦季 70%、秋季 16%、冬季 2%。冰雹天气约 1—2d。

3. 水文情况

新凯河为伊通河最大的支流。该河发源于公主岭市大黑山,流经长春市西郊和农安县南部,于华家乡新凯河村附近汇入伊通河,全长 127 km,流域面积 2419km²,年平均流量为 1.10m³/s,河道坡降为 0.41‰,弯曲系数为 0.20。伊通河属饮马河水系,第二松花江的二级支流,是流经长春市区的唯一的较大河流。其发源于伊通县板石庙大酱缸村青顶子岭下和东风县十八道岗子西南寒丛山下,两源汇合于伊通县营城子,出库后流经长春市、农安县、德惠市,在靠山屯东南与饮马河汇合流入第二松花江,全长 382.5km,汇水面积为 8713.63km²,长春市区河段年平均流量为 3.63m³/s(不包括市

区污水),河道坡降为0.24%,河床宽度为5~30m,流域弯曲系数为0.05。

4. 地貌和地质状况

长春市地处天山一兴安地槽褶皱区,吉黑褶皱系松辽拗陷的东北边缘,属东部山区和西部平原的过渡带,其地貌特点是:远依山,近傍水,以平亢的台地为主,城区地表下分布着深厚的白垩系泉山组,为一套红色较粗粒碎屑岩,均为不透水层或含水性极微,地层深厚,岩层致密,倾角很小,故而下部无深层地下水源,地下水缺乏,市区第四纪沉积相当普遍,沉积层上部为黄土状特质,下部为红色粘土和砂砾层,二级阶地黄土状亚粘土厚 15—25m,是较好的天然基地。

长春城区位于东部山地向西部平源过渡的台地上。地势东高西低,地貌由台地和平原组成,其中,台地占70%,平原占30%,长春城区地貌共分7个小区。其中本开发区位于西南部起伏台地区,该区位于分水高地两侧,包括西新沟和孟家南沟两个部分,西新沟在分水高地两侧,由一系列宽浅的坳沟组成;孟家南沟在分水高地东侧,由两条浅谷组成。这里地势起伏不明显。

环境质量状况

建设项目所在地区域环境质量现状及主要环境问题(环境空气、地表水、声环境等)

地表水及环境空气分别引用《临河街南延长线工程(临河街既有路南端-净月快速路)环境影响报告书》2017 年 6 月中的监测数据及长春市环境保护局公布的《长春市环境监测中心站二〇一七年空气环境质量状况报告》,该次监测后区域内无较大新增污染源,区域环境质量未发生重大变化,引用监测为近三年的监测数据,满足时效性,因此,该数据可用于本项目现状评价,数据利用较为合理。

1、地表水环境现状调查与评价

(1)监测断面的布设

本项目所在区域的污废水经市政污水管网进入东南污水处理中心处理达标后排入 伊通河。因此,本次地表水环境质量现状监测引用在伊通河3个监测断面,监测断面 具体位置详见表4。

 序号
 监测断面
 布设目的

 1#
 前八里堡断面

 2#
 京哈高速桥下断面
 了解区域地表水体情况

 3#
 南四环断面

表 4 地表水监测断面布设情况

(2)监测项目

监测项目选择 pH、COD、BOD。、氨氮、SS、石油类共 6 项目指标。

(3)监测单位及时间

监测单位: 吉林省惠津分析测试有限公司

监测时间: 2016年9月4日

(4)评价方法

P. 计算公式如下:

$$P_{pH} = \frac{7.0 - pH_i}{7.0 - pH_{sd}} \quad (pH_i \le 7.0) \qquad P_{pH} = \frac{pH_i - 7.0}{pH_{su} - 7.0} \quad (pH_i > 7.0)$$

式中: P, —pH 的标准指数;

 pH_i —pH 的监测值;

 pH_{sd} 一标准规定 pH 值的下限;

pH_{st}一标准规定 pH 值的上限。

本次评价采用单因子标准指数法(pH 除外)。水质参数的标准指数 Pi>1 时,表明该水质参数超过了规定的水质标准,已经不能满足其使用要求。

单因子标准指数公式:

$$I_i = Ci/Coi$$

式中: I一第 i 污染物的标准指数;

 C_i —第 i 污染物的实测浓度, mg/L;

 C_{oi} —第 i 污染物的质量标准浓度, mg/L。

(5)评价标准

该区域的水体是新立城水库,根据《吉林省地表水功能区》(DB22/388—2004)要求,伊通河"长胜屯"至"新立城水库库尾"为伊通河长春市农业用水、渔业用水区,为III类水域,故水质评价标准采用《地表水环境质量标准》(GB3838—2002)中III类标准。

(6)监测及评价结果

地表水评价结果详见表 5。

监测项目 监测点位 监测日期 COD BOD_5 氨氮 SS 石油类 рН 0.04L 1# 7.88 23.4 6.9 0.529 57 2# 7.88 15.5 0.671 0.04L 6.4 21 3# 7.76 15.1 5.9 0.940 0.975 31 监测项目 监测点位 2016, 9, 4 рΗ COD BOD_5 氨氮 SS 石油类 0.44 1.17 1.725 0.529 2.28 1# 2# 0.44 0.775 1.6 0.671 0.84 0.38 0.775 1.475 0.94 1.24 19.5

表 5 地表水评价结果统计一览表

由上表可知,各监测断面均不能满足 GB3838-2002《地表水环境质量标准》中III 类水体功能要求,主要超标因子为 COD、BOD5、SS 和石油类,其中 COD 最大潮波啊哦 倍数为 0.17 倍,BOD5 最大超标倍数为 0.725 倍,SS 最大超标倍数为 1.28 倍,石油类 最大超标倍数为 18.5 倍。主要原因一是由于历史原因,伊通河水质污染严重,需要治 理;二是伊通河沿岸乡镇排放的工业废水和生活污水给伊通河带来了一定程度的污染, 三是由于伊通河流量小,受到污染后,水体自净能力较差。 2016年12月吉林东北煤炭工业环保研究有限公司编制完成《长春市南关区水体达标方案》,其中伊通河整治重点项目为长春市河道生态修复工程、伊通河长春市中心城区南段防洪工程、伊通河底泥清淤工程、伊通河全流域水生态治理工程等四项重点工程,通过实施上述工程,于2020底前消除劣V类水体。

2、环境空气质量现状监测与评价

一、区域质量达标情况

(一) 数据来源

本项目所在区域环境质量达标判定数据引用长春市环境保护局公布的《长春市环境监测中心站二〇一七年空气环境质量状况报告》(长环监技字[2018]1号)。

(二) 评价结果

2017年长春市环境监测中心站对空气环境中的二氧化硫、二氧化氮、细颗粒物、可吸入颗粒物、一氧化碳、臭氧、降尘、硫酸盐化速率和大气降水等九项纸表进行了例行监测。二氧化硫、二氧化氮、细颗粒物、可吸入颗粒物、一氧化碳、臭氧的监测点位分别是第一食品中心、客车中心、邮电学院、劳动公园、园林处、净月植物园、经开环卫处、高新管委会、岱山公园。二氧化硫、二氧化氮、细颗粒物、可吸入颗粒物、一氧化碳、臭氧六项指标采用空气自动监测系统每日进行监测。

- (1)二氧化硫 全年共获得有效监测数据 3625 个,其中对照数据 365 个,控制数据 3260 个,超标个数为 8 个,日均值超标率为 0.25%。2017 年,长春市二氧化硫年日均值为 26ug/m³,符合国家年平均二级标准的要求。
- (2)二氧化氮 全年共获得有效监测数据 3620 个,其中对照数据 365 个,控制数据 3255 个,超标个数为 110 个,超标率为 3.38%。2017 年,长春市二氧化氮年日均值为 40ug/m³,符合国家年平均二级标准的要求。
- (3)细颗粒物 全年共获得有效监测数据 3559 个,其中对照数据 365 个,控制数据 3194 个,超标个数为 552 个,日均值超标率为 17. 28%。2017 年,长春市 $PM_{2.5}$ 年日均值为 $46ug/m^3$,超出国家年平均二级标准 0.31 倍。
- (4)可吸入颗粒物 全年共获得有效监测数据 3570 个,其中对照数据 365 个,控制数据 3205 个,超标个数为 252 个,日均值超标率为 7.86%。 2017 年,长春市 PM_{10} 年日均值为 $78ug/m^3$,超出国家年平均二级标准 0.11 倍。

(5)一氧化碳 全年共获得有效监测数据 3608 个,其中对照数据 365 个,控制数据 3243 个,超标数为 0。年 24 小时平均第 95 百分位数为 1.9mg/m³,符合国家 24 小时二级标准。2017 年,长春市 CO 的年日均值和各季的季均值未超过国家标准。

(6) 臭氧 全年共获得有效监测数据 3572 个,其中对照数据 365 个,控制数据 3207 个,超标数为 202 个。日均值超标率为 6.30%。2017 年,长春市 03 年日最大 8 小时平均第 90 百分位数为 142 ug/m³,符合国家年日最大 8 小时平均二级标准。

综上,2017年长春市空气环境质量中细颗粒物和可吸入颗粒物的年平均浓度超过国家年平均二级标准的要求;二氧化硫和二氧化氮年平均浓度符合国家年平均二级标准要求;一氧化碳的年24小时平均第95百分位数符合24小时的二级标准;臭氧的年日最大8小时平均第90百分位数符合最大8小时平均二级标准。据此判定项目所在区环境空气质量为不达标。

3、声环境

(1)监测点布设

本项目监测点位在中心址周边共布设4个噪声监测点位,详见表6。

采样点	所在区域	测点位置	监测目的
1#		厂界东侧外1米处	
2#	中心址	厂界南侧外1米处	了解拟建项目环境背景状况
3#		厂界西侧外1米处	】肝194.建坝日小児月泉仏仇
4#		厂界北侧外1米处	

表 6 厂界噪声监测点位

(2)监测方法

按照《声环境质量标准》(GB3096-2008)中相关监测要求进行监测。

(3)监测时间

析致通标技术检测(吉林)有限公司于2019年6月19日对上述监测点进行了监测,监测一天,分昼、夜两次。

(4)监测结果及评价

噪声监测结果见表 7。

表 7 噪声监测结果 [dB (A)]								
」 测点编号	昼间		夜间					
	监测值	标准	监测值	标准				
1#	52. 7	55	43. 1	45				
2#	51.5	55	42. 4	45				
3#	52. 1	55	42.8	45				
4#	53. 1	55	43. 7	45				

从监测结果上看,区域内声环境质量能够满足《声环境质量标准》(GB3096-2008) 中1类区标准要求,声环境质量较好。

主要环境保护目标 (列出名单及保护级别)

1.环境保护目标

本项目拟建中心址周边无医院、文物保护单位、风景名胜区、水源保护区等环境 敏感点,其选址周边环境保护目标如下。

表 8 本项目环境保护目标一览表

环境 要素	保护目标	方位	距离(m)	功能	保护级别
	启明花园二期	东	120	居住	
	吉林省孤儿学校	东	344	教育	
	玉潭小学	东南	462	教育	
	吉林省科学技术馆	东	822	科研	
	国信净月府	东南	350	居住	
	净月高新技术产业开 发区人民法院	东南	610	行政	
	华润净月台	南	503	居住	
	万科月谭湾	南	828	居住	
	长春恒大檀溪郡	东南	790	居住	
环境	新城大街小学	东南	471	教育	《环境空气质量标准》 (GB3095-2012)二级标 准
空气	伟城东域	东南	863	居住	
	新城大街小学	西	463	居住	
	伟城东域	西	757	居住	
	中国农业科学院长春 兽医研究所	西北	723	科研	
	晟鑫康诗丹郡	北	242	居住	
	中国农业科学院特产 研究所	北	452	科研	
	启明花园一期	东北	147	居住	
	东方之珠水晶湾	之珠水晶湾 东北		居住	
	万科潭溪别墅	东北	535	居住	

	东兴王府	东北	439	居住	
地表水	伊通河	W	6590	农业用 水、渔业 用水	《地表水环境质量标准》 (GB3838─2002)Ⅲ类标 准
声环境	边界	/	1m	居住区	《声环境质量标准》 (GB3096-2008)1 类区 标准

2.污染控制目标

(1)控制本项目新建的燃气锅炉烟气排放满足《锅炉大气污染物排放标准》 (GB13271-2014)中大气污染物特别排放限值要求;

(2)控制厂界噪声符合《工业企业厂界环境噪声排放标准》(GB12348-2008)中 1 类标准,不对周围环境产生干扰。

评价适用标准

1、环境空气

根据《长春市人民政府办公厅关于印发长春市规划区环境空气质量功能区划分规定的通知》(长府办发〔2018〕41号),本项目所在区域为二类区,故环境空气中 PM₁₀、SO₂、NO₂评价标准采用《环境空气质量标准》(GB3095-2012)中二级标准,标准值见表 9。

表 9 环境空气质量标准 单位: mg/m³

境

环

污染	1 小时平均			日平均			
物	PM_{10}	SO_2	NO_2	PM_{10}	SO ₂	NO_2	
数值	_	0.5	0. 2	0.15	0. 15	0.08	

2、地表水环境

质

本项目所在区域地表水体为伊通河,根据《吉林省地表水功能区》(DB22/388—2004)的有关规定,执行《地表水环境质量标准》(GB3838—2002)中III类标准。标准值见表 10。

量

表 10 地表水环境质量标准

污染物	III类标准值	Ⅲ类标准值 单位	
COD	€20	mg/L	
BOD ₅	≤4.0	mg/L] 《地表水环境质量标准》
рН	6~9	无量纲	(GB3838—2002)
	≤1.0	mg/L	

标

3、声环境

准

根据《声环境质量标准》(GB3096-2008)以及《长春市人民政府办公厅关于印发长春市声环境功能区划分规定的通知》(长府办发〔2018〕40号)的相关规定,本项目执行声环境功能 1 类区标准,标准值见表 11。

 类别	标	准值
矢加	昼间	夜间
1 类区	55	45

(1)噪声

本项目位于声环境功能区 1 类区,故厂界外 1m 处噪声执行《工业企业厂界环境噪声排放标准》(GB12348—2008)中 1 类标准要求,详见表 12。

表 12 工业企业厂界环境噪声排放限值 单位 dB(A)

厂界外声环境功能区类别	标准值	dB (A)	标准来源	
/ 介介产机场为配应关剂	昼间	夜间	/小1庄/N///	
1 类	55	45	GB12348-2008	

(2)废气

根据《吉林省人民政府关于印发吉林省落实打赢蓝天保卫战三年行动计划实施方案的通知》(吉政发[2018]15号)要求,本项目燃气锅炉按照《锅炉大气污染物排放标准》(GB13271-2014)中大气污染物特别排放限值要求执行,详见表13。

表 13 锅炉大气污染物排放标准 单位: mg/m³

污染物名称	标准值	
万架初名协	燃气	/小1 庄 <i>木 ⊕</i> 示
SO_2	50	
NO _x	150	CD12071 0014
颗粒物	20	GB13271-2014
林格曼黑度	€1	

"对于打赢蓝天保卫战三年行动计划完成后,是否继续执行大气污染物特别排放限值;以及长春市环境空气质量达标后,是否仍执行特别排放限值"问题,依据长春市环境保护局《关于长春地区执行特别排放限值相关问题的复函》:为保证环境空气质量持续达标,在没有新的标准或者规定出台前,仍将执行此限值。

总量控制指

标

中行吉林省分行培训中心(党校)与档案管理中心一期建设项目环评阶段核算锅炉污染物为 SO_2 : 0. 3t/a, NO_2 : 0. 48t/a。按照 2 倍削减替代的要求,原环评阶段 SO_2 可满足此次替代量要求,剩余 0. 12t/a; NO_2 尚需 0. 38t/a。

本项目大气污染物削减替代指标来自于长春市新园实业有限公司拆除的 1 台 0.3t/h 燃煤锅炉形成的削减替代量($S0_24.29t/a$ 、 $N0_20.52t/a$),能够满足本项目 主要污染物排放量 2 倍削减替代的要求。

建设项目工程分析

工艺流程:

此次涉及的 2 台 3t/h 燃气锅炉和 2 台 1t/h 燃气锅炉没有专门的生产工艺流程。

主要污染工序:

施工期:

本项目在已建成的锅炉房内进行安装,不新增建构物,故没有施工期环境影响。

营运期:

(1)废气

项目营运期产生的废气主要为锅炉烟气。

《污染源源强核算技术指南-锅炉》对于新建锅炉可采取产物系数法估算,故根据《工业污染源产排污手册(2010 年版)》,锅炉烟气量排污系数为 $136259.17 \,\mathrm{m}^3$ -原料, SO_2 排污系数为 $0.02 \,\mathrm{Skg}/\mathrm{万}\,\mathrm{m}^3$ -原料(S:参考《天然气》(GB17820-2012)中:"作为民用燃料的天然气,总硫和硫化氢含量应符合一类气或二类气的技术指标。",取含总硫较大的二类气标准值 $200 \,\mathrm{mg/m}^3$), NO_x 排污系数为 $18.71 \,\mathrm{kg}/\mathrm{T}\,\mathrm{m}^3$ -原料。

本项目涉及的 2 台 3t/h 燃气锅炉和 2 台 1t/h 燃气锅炉的污染物产生情况见表 14。 其所产生的锅炉烟气经由沿楼体安装高度为 27m 的排气筒排放。

污染源	燃气量	烟气量	污染物名称	浓度 (mg/m³)	产生量(t/a)
2 台 3t/h	216000m³/a	2943198m³/a	NO_x	137	0.4
燃气锅炉	210000m/a	2943190III / a	SO_2	29	0. 086
2 台 1t/h	14400m³/a	196213m³/a	NO_x	137	0.027
燃气锅炉	14400III / a	190413III / a	SO_2	29	0. 0058

表 14 锅炉污染物产生情况

(2)废水

本项目生产运行不新增职工,锅炉采取循环水补充方式,没有纯水制造废水产生, 故本项目无污废水排放。

(3)噪声

本项目噪声源来自锅炉主机、辅机的机械噪声,其噪声值在70~80dB(A)之间。

(4)固废

本项目不新增固体废物。

项目主要污染物产生及预计排放情况

内容类型	排放源	污染物 名称	污染物 产生浓度及产生量	污染物 排放浓度及排放量
	2台3t/h燃	SO_2	29mg/m³、0.086t/a	29mg/m³、0.086t/a
废	气锅炉	NO_x	137mg/m³、0.4t/a	137mg/m³、0.4t/a
气	2台1t/h燃	SO_2	29mg/m³、0.058t/a	29mg/m³、0.058t/a
	气锅炉	NO _x	137mg/m³、0.027t/a	137mg/m³、0.027t/a

噪声

本项目噪声源来自锅炉主机及辅机的机械噪声,其噪声值在70~80dB(A)之间。经过采取密闭环境运行、加强设备基础减振等措施,经过处理后噪声到达边界处能够满足《工业企业厂界环境噪声排放标准》(GB12348-2008)中1类区标准限值。

主要生态影响:

本项目在现有选址内实施建设不会破坏该区域的生态环境,没有改变其使用性质, 所以本项目的建设对周围生态环境质量基本无影响。

环境影响分析

营运期污染物预测分析与防治措施:

(-)废气

- 1. 评价等级判定
- (1)评价因子筛选

根据《环境影响评价技术导则 大气环境》(HJ2. 2-2018)的规定,"当建设项目排放的 SO_2 和 NO_2 排放量大于或等于 500t/a 时,评价因子应增加二次 $PM_{2.5}$ ",本项目排放的 SO_2 和 NO_2 排放量为 0.2t/a < 500t/a,无需增加二次 $PM_{2.5}$,具体情况详见下表。

表 15 二次污染物评价因子筛选

类别		污染物排放量		二次污染物评价因子			
	判断标准	$SO_2+NO_X\geqslant 500$		PM _{2.5}			
建设项目		SO_2	0	_			
建区坝日	本项目	NO_x	0	_			
		$SO_2 + NO_X =$	=0<500	无需增加二次 PM _{2.5}			

综上,本项目预测因子如下: SO₂、NO₂。

表 16 评价因子和评价标准表 µg/m³

污染物名称	年平均	24h 平均	1h 平均	一次值	标准来源
$\overline{\mathrm{NO}_{2}}$	40	80	200	/	环境空气质量标准
SO_2	60	150	500	/	外現至气灰里你在

(2)污染源排放参数

根据本工程的工程分析,本次大气环境影响预测因子主要为 SO₂、NO₂,以 4 台锅炉同时运行最大污染源强进行预测,本项目的废气污染源排放参数见表 17、18。

	表 17 点源计算清单									
点源编号	点源名称		笥底部 坐标	排气筒 海拔高度	排气筒 出口内 径	烟气温度	年排放 小时数	排放工况	污染物速	
					红				SO_2	NO ₂
_	_	X	Y	m	m	$^{\circ}$	h		kg	/h
1	锅炉 烟气 排气 筒	125. 4144 34	43. 7 6653 7	238	0.5	100	4320(同时运 行时间)	正常	0. 021	0. 099

(3)估算模型参数

表 18 估算模型参数表

W 10 HAT IVILLA WAY				
	参数	取值		
城市农村/选项	城市/农村	城市		
姚巾农们/ 起坝	人口数(城市人口数)	4000000		
最高	环境温度	40.0 ° C		
最低	环境温度	−36.5 ° C		
土地	利用类型	城市		
区域	湿度条件	中等湿度		
是否考虑地形	考虑地形	否		
走百 写 尼 地 ル	地形数据分辨率(m)	90		
目不老虚海出好乖	考虑海岸线熏烟	否		
是否考虑海岸线熏 烟	海岸线距离/km	/		
ALL	海岸线方向/°	/		

(4)主要污染源估算模型计算结果

表 19 SO₂ 预测结果

下方向距离(m)	点	源
↑刀円此呙(Ⅲ)	SO ₂ 浓度(ug/m³)	SO2占标率(%)
1.0	0.0	0.0
12.0	3. 977	0. 795
25. 0	1.704	0. 341
50. 0	1. 087	0. 217
75. 0	0.71	0. 142
100.0	0.801	0. 16
125. 0	0.71	0. 142
150. 0	0. 623	0. 125
175. 0	0. 544	0.109

200. 0	0. 477	0. 095
225. 0	0. 421	0. 084
250. 0	0.374	0. 075
275. 0	0.334	0.067
300.0	0.301	0.06
325.0	0. 273	0.055
350.0	0. 249	0.05
375. 0	0. 228	0.046
400.0	0.21	0. 042
425. 0	0. 196	0. 039
450. 0	0. 183	0. 037
475. 0	0. 172	0. 034
500.0	0. 162	0. 032
525. 0	0. 153	0. 031
550. 0	0. 144	0. 029
575. 0	0. 137	0. 027
600.0	0. 129	0. 026
625. 0	0. 123	0. 025
650.0	0. 117	0. 023
675. 0	0. 112	0. 022
700.0	0. 107	0. 021
725. 0	0. 102	0.02
750.0	0.098	0.02
775. 0	0. 093	0. 019
800.0	0.09	0. 018
825. 0	0.086	0. 017
850.0	0. 083	0. 017
875. 0	0.08	0.016
900. 0	0.077	0. 015
925. 0	0. 074	0. 015
950. 0	0.072	0. 014
975. 0	0.069	0. 014
1000.0	0.067	0. 013
下风向最大浓度	3. 977	0. 795
下风向最大浓度出现距离	12.0	12.0
D10%最远距离	/	/

	<u>表 20 NO。预测结果</u>				
	点源				
下方向距离(m)	NO₂浓度(ug/m³)	NO2占标率(%)			
1.0	0.0	0.0			
12.0	18. 747	9. 374			
25. 0	8. 033 4. 017				
50. 0	5. 125	2. 563			
75. 0	3. 346	1.673			
100.0	3. 775	1.888			
125. 0	3. 348	1.674			
150. 0	2. 939	1. 47			
175. 0	2. 566	1. 283			
200. 0	2. 249	1. 124			
225. 0	1. 983	0.992			
250. 0	1.762	0.881			
275. 0	1. 576	0.788			
300.0	1. 42	0.71			
325. 0	1. 287	0.644			
350.0	1. 173	0.587			
375.0	1. 075	0.538			
400.0	0. 99	0.495			
425. 0	0. 924	0.462			
450.0	0.865	0.432			
475.0	0.811 0.406				
500.0	0. 763 0. 382				
525. 0	0.719 0.36				
550.0	0.68	0.34			
575.0	0. 644	0.322			
600.0	0.61	0.305			
625. 0	0. 58	0.29			
650.0	0. 552	0. 276			
675. 0	0. 526	0. 263			
700. 0	0. 502	0. 251			
725. 0	0.48	0. 24			
750. 0	0. 46	0.23			
775. 0	0.441	0. 22			
800.0	0. 423	0. 211			
825. 0	0.406	0. 203			
850. 0	0.391	0. 195			
875. 0	0.376	0.188			
900. 0	0. 362	0.181			

925. 0	0.35	0. 175
950. 0	0. 338	0. 169
975. 0	0.326	0. 163
1000. 0	0.315	0. 158
下风向最大浓度	18. 747	9. 374
下风向最大浓度出现距离	12. 0	12.0
D10%最远距离	/	/

(5)评价等级判定

根据《环境影响评价技术导则 大气环境》(HJ2. 2-2018)的规定,采用估算模式计算本工程正常排放情况下的主要污染物的最大影响程度和最远影响范围,然后按评价工作分级判据进行分级。本工程各种烟气污染物最大地面浓度占标率 P_i的计算结果见表 21,评价工作等级划分原则见表 22。

表 21 主要污染物的最大地面浓度占标率

污染源	预测因子	占标率(%)	
锅炉	SO_2 , NO_2	0.795、9.37	

表 22 环境空气评价工作等级划分原则

评价工作等级	评价工作分级依据
一级	P _{max} ≥10%
二级	1%≤P _{max} <10%
三级	P _{max} < 1%

计算结果可以看出,最大地面浓度占标率 $P_{max}=max$ (P_{NMHC}) =9.37%, $1\% < P_{max} < 10\%$,评价等级为二级。评价范围为以企业中心址为中心区域,自厂界外延边长为 5km 的矩形区域。

根据《环境影响评价技术导则 大气环境》(HJ2.2-2018)的规定,二级评价项目不进行进一步预测与评价,只对污染物排放量进行核算。

根据《工业污染源产排污手册(2010 年版)》,锅炉烟气量排污系数为 136259. 17m³/万 m³-原料, SO_2 排污系数为 0. 02Skg/万 m³-原料(S: 参考《天然气》(GB17820-2012)中:"作为民用燃料的天然气,总硫和硫化氢含量应符合一类气或二类气的技术指标。",取含总硫较大的二类气标准值 200mg/m^3), NO_x 排污系数为 18. 71kg/万 m^3 -原料。本项目 2 台 3 t/h 和 2 台 1 t/h 的燃气锅炉的污染物产生及排放情况见表 23。其所产生的锅炉烟气经由沿楼体安装高度为 27 m 的排气筒排放,烟气污染物浓度能够达到《锅炉大气污染物排放标准》(GB13271-2014)中大气污染物特别排放限值要求。

	表 23 锅炉污染物产生及排放情况							
	烟气量	污染物	产生作	青况		排放	女情况	
污染源	(m³/a)	75 年 初 名称	浓度	产生量	排放方式	浓度	 排放量(t/a)	
	(111 / a)		(mg/m^3)	(t/a)		(mg/m^3)	111以重(以在)	
】 3t/h 锅炉	2943198	NO_x	137	0.4		137	0.4	
3 t/ II 144///	2343130	SO_2	29	0.086	 直排	29	0.086	
1t/h 锅炉	196213	NO_x	137	0. 027	<u>1</u> 2.311	137	0. 027	
10/11 11/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1	190213	SO_2	29	0.0058		29	0.0058	

(二)噪声

本项目噪声源来自锅炉主机、辅机等的机械噪声,其噪声值在70~80dB(A)之间。本项目投产后,在现有隔声、消声等噪声污染防治措施的基础上采取如下治理措施可使噪声在厂界外1m处满足《工业企业厂界环境噪声排放标准》(GB12348-2008)1类标准:

- ①在满足工艺要求的前提下,应尽量选用锅炉及相应辅机的低噪声设备。随着使用 年限的增长,应加强对设备检修和维修,发现问题及时处理,保证设备正常运转。
- ②在有关环保人员的统一管理下,定期检查、监测边界噪声情况,发现噪声超标时要及时治理,并增加相关操作岗位人员的防护。

(三)环境风险分析:

根据《建设项目环境风险评价技术导则》(HJ169-2018)分级方法,当只涉及一种危险物质时,计算该物质的总量与其临界量比值,即为Q,本项目仅涉及天然气一种危险物质,天然气的临界量为10t,两个截断阀室之间管段危险物质最大存在总量为0.1m³,故Q<1,本项目环境风险潜势为I,属于简单分析。

本项目主要环境敏感目标分布情况见表24。

表 24 本项目环境保护目标一览表

环境 要素	保护目标	方位	距离(m)	功能	保护级别
	启明花园二期	东	120	居住	
	吉林省孤儿学校	东	344	教育	
	玉潭小学	东南	462	教育	
环境	下境 吉林省科学技术馆		822	科研	《环境空气质量标准》
空气	国信净月府	东南	350	居住	(GB3095-2012)二级标准
	净月高新技术产业开发 区人民法院	东南	610	行政	
	华润净月台	南	503	居住	

	万科月谭湾	南	828	居住	
	长春恒大檀溪郡	东南	790	居住	
	新城大街小学	东南	471	教育	
	伟城东域	东南	863	居住	
	新城大街小学	西	463	居住	
	伟城东域	西	757	居住	
	中国农业科学院长春兽 医研究所 西北		723	科研	
	晟鑫康诗丹郡	北	242	居住	
	中国农业科学院特产研 北 究所		452	科研	
	启明花园一期	东北	147	居住	
	东方之珠水晶湾	东北	341	居住	
	万科潭溪别墅	东北	535	居住	
	东兴王府	东兴王府 东北 439 居住		居住	
地表 水	伊通河	W	6590	农业用 水、渔业 用水	《地表水环境质量标准》 (GB3838─2002)Ⅲ类标 准

本项目仅仅涉及天然气一种危险物质,通过市政燃气管道接入锅炉房内,无储气柜,但管路泄露可能导致发生环境风险,通过空气扩散引发火灾、爆炸等风险后果。

风险防范措施和应急措施:

- 1. 设计上应采取的防范措施
- (1)严格按《化工企业安全卫生设计规范》(HG20571-2014)、《石油化工企业设计防火规范》(GB50160-2008)、《建筑设计防火规范》(GB50016-2014)、《爆炸危险环境电力装置设计规范》(GB50058-2014)、《石油化工企业可燃气体和有毒气体检测报警设计规范》(GB50493-2009)中的规定进行工程安全防火设计。
- (2)生产装置尽量采用先进合理、安全可靠的工艺流程,从根本上提高装置的安全性,防止和减少事故的发生。
 - (3)在环境运行内应按要求设置通风设施。
 - 2. 消防防范措施
- (1)根据国家消防法规要求,企业结合实际建立一支专业消防部门,指定防火防灾规划,明确责任区,针对本企业重点生产装置、重点部位、重要设备等易燃易爆区,制定灭火作战方案,进行实地演练,不断提高业务素质和灭火防灾能力。
 - (2)配备消防技术装备。消防技术装备主要包括各种性能的灭火剂、防毒剂等,灭火

剂的贮量满足消防规定要求。

3. 泄漏防范措施

如发生事故性泄漏,应迅速撤离泄漏污染区人员至安全区,并进行隔离严格限制出入,建议应急处理人员戴自给正压式呼吸器、穿防碱工作服。

A、环境风险事故应急措施:

新建装置在生产运行过程中可能引发风险事故的原因包括外界因素影响、工艺过程及自然灾害、分别采取相应的应急措施。

1. 外界因素和工艺过程事故应急措施

外界因素影响可能发生的事故应急措施见表 25, 因工艺过程异常导致事故及应急措施见表 26。

	农 20								
岗位	危险点	因素	危险性	控制手段					
锅炉房	锅炉房	停电	液面无指示易造成冒罐、跑 料,引发火灾及爆炸事故	立即关闭锅炉及相应装置的各进 出口伐门,各机泵开关处于停电 位置					
物 <i>炉 历</i>	锅炉房	泄露	液面无指示易造成跑料,引 发火灾及爆炸事故	立即关闭相应装置的各进出口伐 门,各机泵开关处于停电位置					

表 25 外界因素影响可能发生的事故应急措施

表 26 因工艺过程异常导致事故及应急措施

岗位	异常原因	危险部位及设备	应急措施的操作程序
锅炉房	漏料	锅炉及相应装置的管线、阀门、机 泵及其动、静密封点	停止接送料,将地漏处井伐关闭,回 收物料,封锁进出储存区的通道

B、应急预案:

1. 应急预案设立原则

为确保企业安全生产及公司职工和周边群众生命财产安全、防止突发性重事故发生,并在发生事故后能迅速有效、有条不紊地处理和控制事故扩大,把损失和危害减少到最低程度,结合该企业实际、本着"自救为主、外援为辅、统一指挥、当机立断"的原则,特设立应急预案。

2. 危险源安全备用情况

锅炉房内设置消火栓及粉末灭火器,以备应急救援。

- 3. 风险事故发生应急预案
- (1)应急救援指挥领导小组的组成、职责

该企业应成立由企业主要领导,以及生产、安全环保、设备、保卫、卫生等部门领导组成的应急救援指挥领导小组。下设应急救援办公室,建议日常工作由企业安全环保部兼管。"指挥领导小组"建议设在生产调度室。

应急救援指挥领导小组的公司领导负责本项目的重大事故应急预案的制定、修订; 组建应急救援行动;向上级汇报和向社会救援组织通报事故情况,必要时发出救援请求, 对事故应及时总结。

(2)应急预案

①火灾处理方法

锅炉房如果发生火灾,首先应用采用泡沫、二氧化碳、干粉、砂土等灭火剂进行灭火,同时采取喷水冷却容器。如处于火场中的容器已变色可从安全泄压装置中产生声音,必须马上撤离。

②泄露应急处理措施

迅速撤离泄露污染区人员至安全区,尽可能切断泄露源,防止进入下水道及地表水体等限制性空间。

通过制定相应的环境风险应急预案,可以降低本项目对周围环境产生风险影响。

次 200 							
建设项目名称	中行吉林省分行培训中心(党校)与档案管理中心一期锅炉建设项目						
建设地点	(吉林)省	(长春)市		(长春净月 产业开发	目高新技术 支区)区	(/) 县	
地理坐标	经度	经度 125°41'44.41"				43° 7	6' 65. 37"
危险物质及分布	天然气,由市政管网接入锅炉房						
环境影响途径及危害	管路泄露可能导致发生环境风险,通过空气扩散引发火灾、爆炸等风险后 果						
风险防范措施要求	切断管路,撤离人员,组织消防灭火						

表 26 建设项目环境风险简单分析内容表

环保投资估算:

类别

设备噪声

本项目总投资 200 万元,环保投资 2 万元,占总投资 1%,详见表 27。

 环保措施
 投资额 (万元)

2

表 27 建设项目环保投资一览表

基础减振、消声等

三同时情况:

噪声

本项目"三同时"验收内容见表 28。

	表 28 "三同时"验收一览表					
	类别	环保措施	验收标准			
废气	锅炉烟气	沿楼体设置的高度为 27m 高烟囱排放	《锅炉大气污染物排放标准》 (GB13271-2014)特别排放限值			
噪声	设备噪声	采用软连接基础减振、消声等	《工业企业厂界环境噪声排放 标准》(GB12348-2008)1 类 标准			

"以新带老"措施:

本项目实施后所采取的"以新带老"措施是采用强化环境管理,加强日常环境监督, 定期更新环境风险应急预案。

"三本账"核算:

参照环评阶段的数据,本项目实施后其三本账情况见29。

表 29 全中心污染物排放"三本帐"核算

			1	Г			1	_
分类	污染物	单位	原有排放量	新建 产生量	新建 排放量	以新带老消 减量	排放总量	排放增减 量
废水	废水	万 m³/a	1.608	0	0	0	1. 608	0
	COD	t/a	1. 18	0	0	0	1.18	0
	SS	t/a	4. 11	0	0	0	4.11	0
	BOD_5	t/a	3. 6	0	0	0	3.6	0
	氨氮	t/a	0. 59	0	0	0	0.59	0
废气	NO _x	t/a	0. 48	0.43	0.43	-0.05	0.43	-0. 05
	SO ₂	t/a	0.3	0.092	0.092	-0. 2208	0.092	-0. 2208
固废	学员及教职工 生活垃圾	t/a	84	0	0	0	84	0

项目拟采取的防治措施及预期治理效果

内容 类型	排放源	污染物名 称	防治措施	预期治理效果				
废气	燃气锅炉	SO ₂	直排,通过 已设置于楼体高 度为 27m 高的烟	满足《锅炉大气污染物 排 放 标 准》 (GB13271-2014)中 大气污染物特别排放限值要求				
		NO_2	囱排放。					
噪声	本项目噪声源来自锅炉主机、辅机的机械噪声。经过采取密闭环境运行、							
	加强设备基础减振等措施,经过处理后噪声到达边界处能够满足《工业企业厂							
<i></i>	界环境噪声排放标准》(GB12348-2008)中1类区标准限值。							

生态保护措施及预期效果:

本项目使用现有固化场地进行建设,中心区周围无生态环境保护目标,且本项目 产生的污染物量较少,对周围生态环境基本不会产生不利影响。

建设项目环境可行性分析

1. 项目选址合理性

中行吉林省分行培训中心(党校)与档案管理中心位于长春净月高新技术产业开发区聚业大街与永顺路交汇处,2012年4月长春市国土资源局将宗地编号为55-11-15的教学用地以净地形式出让,该项目符合长春净月高新技术产业开发区总体规划要求。

2. 产业政策符合性

本项目所涉及使用的锅炉属于热力生产及供应业,不属于鼓励类、限制类和淘汰类项目,应属于允许类项目,因此本项目建设符合国家的产业政策。

3. 污染物达标排放可行性

运营期本项目所排放的污染物主要为锅炉烟气及设备噪声。其中锅炉烟气采取直排方式并通过已有的 27m 高烟囱排放后能够满足《锅炉大气污染物排放标准》(GB13271-2014)中大气污染物特别排放限值要求;设备噪声通过优先选用低噪声设备,对主要设备采取基础减振、密闭运行等措施后,厂界处噪声能够满足《工业企业厂界环境噪声排放标准》(GB1238-2008)中1类区标准要求。

4. 环境影响可接受性分析

由工程分析可知,本项目在实施过程中废气、噪声等污染源均采取了可靠的污染防治措施,可以实现各类污染物达标排放。其对大气环境、声环境影响较小,不会改变原有环境功能和类别,其影响可在环境标准允许范围之内,环境可接受性较好。

环境管理与环境监测

为贯彻执行国家环境保护的有关规定,确保企业实施可持续发展的长远战略,协调 好新建项目投产后的生产管理和环境管理,本环评报告对环境监测制度提出建议。

为确实做好本项目投产后环境管理、环境监测等工作,强化环境管理,确保各项污染治理设施正常稳定运行,最大限度地减少事故性排放的发生。应设至少1名专职环境管理人员,负责环境管理工作。

1、环境管理职责

贯彻执行国家和地方颁布的环境保护法规、政策和环境保护标准,协助中心领导确定中心环境保护方针、目标。

制订环境保护管理规章、制度和实施办法,并经常监督检查各单位执行情况;组织制定中心环境保护规划和年度计划,并组织或监督实施。

负责环境监测管理工作,制定环境监测计划,并组织实施;掌握"三废"排放状况,建立污染源排污监测档案和台账,按规定向地方环保部门汇报排污情况以及企业年度排污申报登记,并为解决中心重大环境问题和综合治理决策提供依据。

监督检查环境保护设施的运行情况,并建立运行档案。

制定切实可行的各类污染物排放控制指标、环境保护设施运行效果和污染防治措施落实效果考核指标、"三废"综合利用指标及绿化建设等环保责任指标,层层落实并定期组织考核。

2、环境管理要求

- (1)查清污染源状况、建立污染源档案,协调与生产部环境室的管理工作和定期 环境监测工作。
- (2)编制企业环境保护计划,与企业的生产发展规划同步进行,把环境保护设施运转指标、同时生产指标一样进行考核,做好环境统计。
 - (3) 建立和健全各种环境管理制度,并经常检查监督。

3、环境管理制度

根据《中华人民共和国环境保护法》及相关规定,为切实做好企业环保工作,结合本企业实际情况,制定管理制度。

4、环境监测计划

①废气

监测项目:锅炉SO₂、NO_x

监测点:锅炉排气筒进口和入口;

监测频次:建议每年监测二次;

采样分析方法:《固定污染源排气中颗粒物和气态污染物采样方法》 (GB/T16157-1996)

委托监测单位:有资质的第三方检测公司。

②噪声

监测项目:噪声(等效声级);

监测点: 厂界四周外 1m 处;

监测频次:建议每年监测两次;

采样分析方法: 与标准直接比较法:

委托监测单位:有资质的第三方检测公司。

本项目在营运期的环境监测计划如表 30 所示。

表 30 营运期的环境监测计划

时段	监测 重点	监测 项目	监测点位	监测时间与频率
一	厂界	噪声	厂界外 1m 处	1 次/月
营运期	锅炉烟囱	SO ₂ , NO _x	排气筒采样口	1 次/半年

结论与建议

1. 项目概况

中国银行股份有限公司吉林省分行在长春净月高新技术产业开发区聚业大街与永顺路交汇处购地一处,占地面积 48440m², 2012 年委托吉林大学编制《中行吉林省分行培训中心(党校)与档案管理中心一期建设项目》,长春市环境保护局净月高新技术产业开发区分局以《关于中行吉林省分行培训中心(党校)与档案管理中心一期建设项目环境影响报告表的批复》(长环净建(表)【2012】63号)同意项目的实施建设。

中行吉林省分行培训中心(党校)与档案管理中心一期目前已经完成楼宇建设,处于室内装修和设备安装调试阶段,为了保证更好的供暖条件,其将原已审批的3台2t/h燃气锅炉,更换为2台3t/h燃气锅炉和2台1t/h燃气锅炉,但未履行更换锅炉的环评手续且锅炉更换后均未投入使用。

根据生态环境部办公厅 2019 年 5 月 22 日印发的《关于进一步规范适用环境行政处罚自由裁量权的指导意见》,中行吉林省分行培训中心(党校)与档案管理中心一期属于免于处罚情形,即:违法行为(如"未批先建")未造成环境污染后果,且企业自行实施关停或者实施停止建设、停止生产等措施。

2. 环境质量现状分析

评价区域内受纳水体的使用功能不能满足《地表水环境标准》(GB3838-2002)中相应的水体功能要求;

评价区域内各监测项目的浓度值均低于《环境空气质量标准》(GB3095-2012)二级标准,说明评价区域内的环境空气质量现状较好,尚有一定环境容量;

区域内声环境质量能够满足《声环境质量标准》(GB3096-2008)中1类区标准要求, 声环境质量较好。

3. 环境影响分析结论

施工期污染防治措施:

本项目在综合楼地下室内进行安装,不新增建构物,故没有施工期环境影响。 营运期污染防治措施:

(1)废气

本项目所产生的锅炉烟气采取直排方式并通过现有的 27m 高烟囱排放后能够满足《锅炉大气污染物排放标准》(GB13271-2014)中大气污染物特别排放限值要求,对周

围环境空气影响较小。

(2)噪声

本项目噪声源来自锅炉主机、辅机等的机械噪声。在现有隔声、消声等噪声污染防治措施的基础上优先采购低噪声锅炉及辅机设备,加强设备的基础减振和锅炉房内的密闭隔声等措施,噪声在厂界外 1m 处满足《工业企业厂界环境噪声排放标准》(GB12348-2008)1 类标准。

4. 总量控制

中行吉林省分行培训中心(党校)与档案管理中心一期建设项目环评阶段核算锅炉污染物为 SO_2 : 0. 3t/a, NO_2 : 0. 48t/a。按照 2 倍削减替代的要求,原环评阶段 SO_2 可满足此次替代量要求,剩余 0. 12t/a; NO_2 尚需 0. 38t/a。

本项目大气污染物削减替代指标来自于长春市新园实业有限公司拆除的 1 台 0.3t/h 燃煤锅炉形成的削减替代量($SO_24.29t/a$ 、 $NO_20.52t/a$),能够满足本项目主要 污染物排放量 2 倍削减替代的要求。

5. 环境风险

本项目存在一定的风险,但风险度在可接受的范围以内,落实相应的环境风险预防措施及生产安全预防措施后,可把本项目风险事故发生概率及影响危害程度降到最低。

6. 产业政策合理性

本项目不属于国家发改委《产业结构调整指导目录》(2013年修正)的鼓励类、限制类、淘汰类,为允许类项目,符合国家产业政策要求。

7. 环境影响评价结论

综上所述,本项目的建设符合国家产业政策要求,项目所在地环境空气质量较好, 尚有一定环境容量,项目选址合理,运行过程中所带来的环境风险较小且各项污染物的 排放通过相应污染防治措施治理后能够满足相应的排放标准要求,从环境保护角度看, 本项目建设可行。

审批意见:			
		.,	.
		公	章
经办人:			
	年	月	日

建设项目大气环境影响评价自查表

	工作内容	自查项目									
评价等级与	评价等级		一级口				二级口			三级	Ø
范围	评价范围	边长	≲=50 km ⊏]		边长:	5~50	km 🗆		边长=5	km₽
	SO ₂ +NOx 排放量	≥ 2000t/a □ 500~2000t,					/a □ <500 t/a ☑				
评价因子	评价因子	基本》 其他污染物(亏染物(S0 ₂)	NO_x			包括二次 PM2.5 □ 不包括二次 PM2.5 ☑				
评价标准	评价标准 评价标准		国家标准☑ 地方					附录 D □			标准口
	环境功能区		一类区口	,			二类区。		一类	区和二氢	
	评价基准年			(•	2018		 年			
现状评价	环境空气质量 现状调查数据来源	长期何	刘行监测数 据	孝 口	主	管部门		り数据□	现	现状补充监测☑	
	现状评价		达标[X 🗷				不达	标区	П	
污染源 调查	调查内容	本项目非	正常排放源 正常排放源 现有污染源	□ 拟替	代的污	染口	其	他在建、拟建 污媒	建项目 セ源□	区域	污染源口
	预测模型	AERMOD	ADMS	AUSTAL			/AEDT □	CALPUFF		格 模	其他 □
	预测范围	边长≥ 50 km □ 边长 5				÷5∼50	5~50 km □ 边长= 5 km □				
	预测因子	预测因子(SO ₂ 、NO _x)				包括二次 PM2.5 □ 不包括二次 PM2.5 ☑			j		
大气环境影响预测与 评	正常排放短期浓度 贡献值	C	示率≤100%	口 C ******* 最大			C 本項目最大占	占标率>100% □			
价	正常排放年均浓度	一类区	C $_{$ क्ज़ $_{}$ $}$	С本項目最大占标率≤10%口			C 本项目最大标率>10% □				
	贡献值	二类区 C 本項目最大占村			≤≤30%口 C * □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □			☆ 标率 > 30% □			
	非正常排放 1h 浓度 贡献值	非正常持续()]		С #正常占村	示率≤	100% [
	保证率日平均浓度和 年平均浓度叠加值		C _{em} 达标[C☆m不达标□				
	区域环境质量的整体 变化情况		<i>k</i> ≤−20% [k>-20			% □			
环境监测	污染源监测	监测因于	Z: (S0¸、) 粒物)	NO ₂ 、NHMC、	颗			织废气监测 、 织废气监测。		j	无监测□
计划	环境质量监测	监测因]子: ()) 监测点位数()无监测□						
	环境影响			可以接受	Ø	- /	不可以	接受口			
评价结论	大气环境防护距离			距 () 厂	界最	 远() m			
	污染源年排放量	SO ₂ : (0.	092) t/aN	0_2 : (0.43)	t/a		颗粒物	IJ: () t/:	a VC)Cs: () t/a

建设项目地表水环境影响评价自查表

	工作内容		自歪	查项目					
	影响类型	水污染影响型 ∡; 水文要素影	响型 ℃						
		应用水水源保护区 C; 饮用水取水口 C; 涉水的自然保护区 C; 重要湿地 C;							
影	水环境保护目标	重点保护与珍稀水生生物的栖	息地 ℂ;重要水生生物的	的自然产卵地及索耳场、越冬场	和洄游通道、天然渔场等				
响									
识别	影响途径	水污染影响	向型	水文要素	影响型				
别	尿汐門	直接排放 ℂ;间接排放 ∡ ;其	其他 ℃	水温 ℂ; 径流 ℂ; 水域面积	\mathbb{C}				
	影响因子	持久性污染物 C; 有毒有害污	染物 ℂ;非持久性污染	水温 C; 水位(水深) C; 氵					
		物 ∡ ; pH 值 ℂ; 热污染 ℂ;	富营养化 ℂ; 其他 ℂ	水温 C; 水应 (水水) C; {	加及 C; 加里 C; 共旧 C				
	评价等级	水污染影响	向型	水文要素	影响型				
	开川 守 级	一级 \mathbb{C} ; 二级 \mathbb{C} ; 三级 \mathbb{A} \mathbb{C} ;	三级 B ∡	一级 ℂ; 二级 ℂ; 三级 ℂ					
		调查项目		数据来源					
	区域污染源	已建 C; 在建 C; 拟建 C;	 拟替代的污染源	排污许可证 ℂ; 环评 ℂ; 环保验收 ℂ; 即有实测 ℂ;					
		其他 C;	10年代的77天/55 色	现场监测 ℂ;入河排放口数据 ℂ;其他 ℂ					
		调查时期	明	数据来源					
现	受影响水体水环境质量	丰水期ℂ ; 平水期 ∡ ; 枯水期	用 C; 冰封期 C;	上太环培促护士管部门 C. **	ふ 佐 別 ノ . 甘 他 C				
状温		春季 ∠ ; 夏季ℂ; 秋季 ℂ; 冬	季 ℂ	生态环境保护主管部门 C; 补充监测 ∡ ;其他 C					
调查	区域水资源开发利用状况	未开发 C; 开发量 40%以下 C	; 发量 40%以上 ℃						
	调查时期		数据来源						
	水文情势调查	丰水期 C; 平水期 C; 枯水期	月 C; 冰封期 C;	水气动主管如门 0 从去账项	业				
		春季 C; 夏季 C; 秋季 C; 冬	冬季 ℃	水行政主管部门 C; 补充监测 	77 し; 共化 し				
	补充监测	监测时期	 明	监测因子	监测断面或点位				

	工作内容	自查项目							
		丰水期ℂ; 平水期 ∠ ; 枯水期 ℂ; 冰封期 ℂ; 春季 ∠ ; 夏季ℂ; 秋季 ℂ; 冬季 ℂ							
	评价范围	河流: 长度(3) km; 湖库、河口及近岸海域: 面积() km²							
	评价因子	(pH、COD、BOD₅、氨氮)							
	评价标准	河流、湖库、河口: I 类 \mathbb{C} ; II 类 \mathbb{C} ; IV类 \mathbb{C} ; V 类 \mathbb{Z} ; 近岸海域:第一类 \mathbb{C} ; 第三类 \mathbb{C} ; 第四类 \mathbb{C} 规划年评价标准 ()							
现	评价时期	丰水期ℂ; 平水期 ∠; 枯水期 ℂ; 冰封期 ℂ; 春季 ∠; 夏季ℂ; 秋季 ℂ; 冬季 ℂ							
状评价	评价结论	水环境功能区或水功能区、近岸海域环境功能区水质达标状况: 达标 C; 不达标	达标区 ℂ 不达标区 ∡						
	预测范围	河流:长度()km;湖库、河口及近岸海域:面积()km²							
影 响 —	预测因子	()							
预测	预测时期	丰水期 \mathbb{C} ; 平水期 \mathbb{C} ; 枯水期 \mathbb{C} ; 冰封期 \mathbb{C} ; 春季 \mathbb{C} ; 夏季 \mathbb{C} ; 秋季 \mathbb{C} ; 冬季 \mathbb{C} 设计水文条件 \mathbb{C}							

	工作内容				自查项目						
		建设期 C; 生产运	建设期 \mathbb{C} ; 生产运行期 \mathbb{C} ; 服务期满后 \mathbb{C}								
	 	正常工况 ℂ; 非正常工况 ℂ									
		污染控制可减缓措施方案 ℂ									
		区(流)域环境质	量改善目標	标要求情景 ℂ							
	☆ 2世 7十	数值解 C;解析解	! ℂ; 其他	L C							
	[预测方法	导则推荐模式 ℂ;	其他 ℂ								
	水污染控制和水环境影响 减缓措施有效性评价	区(流)域环境质	区(流)域环境质量改善目标 ℂ; 替代消减源 ℂ								
		排放口混合去外满	足水环境位	保护要求 ℂ							
		水环境功能区或水	功能区、	近岸海域环境功能	能区水质达标 ℂ						
		满足水环境保护目标水域水环境质量要求 ℂ									
		水环境控制单元或	断面水质	达标 ℃							
	水环境影响评价	满足重点水污染物	排放总量	控制指标要求,	重点行业建设项目,	主要污染物排放满	足等量或减量替代要求 €				
影		满足区(流)域环	满足区(流)域环境质量改善目标要求 ℂ								
响		水文要素影响型建	设项目同时	时应包括水文情	势变化评价、主要水	文特征值影响评价、	、生态流量符合性评价 €				
评价		对于新设或调整入	河(湖库、	、近岸海域)排放	放口的建设项目,应位	包括排放口设置的現	环境合理性评价 ℂ				
		满足生态保护红线	、水环境	质量底线、资源	利用上线和环境准入	青单管理要求 🗸					
) -)+)r; UL)L = L+ 65	污染物名称		排放	量/ (t/a)	排	放浓度/ (mg/L)				
	污染源排放量核算										
	替代源排放量情况	污染源名称 排污许可证编号 污染物名称 排放量 排放浓度/(mg/L)									
	百八%개以里用儿	()	(()	()	()	()				
	生态流量确定				月() m³/s; 其他(月() m³/s; 其他(
防	环保措施	污水处理设施 ℂ;	水文减缘	爰设施 ℂ; 生态剂		域消减依托其他工	程措施 ℂ;其他 ∡				

	工作内容		自查项目	
治			环境质量	污染源
措 施	11次河山江十七山	监测方法	手动 ℂ;自动 ℂ;无检测 ∡	手动 ∡ ;自动 ℂ; 无检测 ℂ
	监测计划	监测点位	()	(污水总排口)
		监测因子	()	(pH, COD, BOD ₅ , SS, NH ₃ -N)
	污染物排放清单	4		
	评价结论	可以接受 ∡; 不可以接受	. ℃;	
注:	"ℂ"为勾选项,可√; "()"为内容填写项:"省	备注"为其他补充内容。	

环境风险评价自查表

-	工作内容	完成情况									
	危险	名称			天然气						
	物质	存在总量	量/t				0. 1m ³				
		大气	500m	范围内人口	口数 2000	人	5kn	范围内人	口数	人	
		人(毎亿	\ 里管段周	边 200m 范围内人口数(最大)		_人	
风 险		地表水		水功能敏 感性	F1 ℂ		F2	2 C F3		\mathbb{C}	
调 查	环境敏感性	地衣水		敏感目标 分级	S1 C		S2	2 C	S3	\mathbb{C}	
		ᄟᅩᆉ	地下水功能敏感性		G1 C		G2	2 C	G3	\mathbb{C}	
		地下水	包气*	带防污性 能	D1C		D2	2 €	D3	\mathbb{C}	
		Q 值	Q	<1∡	1≤Q<1	0C	10≤Q·	<100 C	Q>10	00 C	
物质及工艺系统 危险性		M 值	N	M1 ℂ	M2 €		MS	3 C	M4 ℂ		
		P 值	F	P1 ℂ	P2 ℂ	;	P3	3 C	P4	\mathbb{C}	
		大气	大气 E1 ℃		E2 C			E3 C			
环坎	竟敏感程度	地表水	E1 C		E2 C			E3 C			
		地下水	E1 ℂ		E2 C				E3 C		
环坎	竟风险潜势	$\mathrm{IV}^{\scriptscriptstyle{+}} \; \mathbb{C}$	IV ℂ		III C		II C		I 🗸		
į	平价等级	一级 ℃		二级 © 三组		级 ℂ 简单分析		析∡			
凤	物质危险性		有毒石	有害 ℂ			易燃易爆・ム				
险 识	风险类型	汁	世漏 ∡	2	火灾、	爆灯	F引发件 <u></u>	生/次生污	上/次生污染物排放 ∡		
别	影响途径		(气 🔏	<u> </u>	地表	長水	\mathbb{C}	地下水 ℂ 其他估算法 ℂ			
事	故情形分析	源强设 定方法	计算	算法 ℂ	经验位	估算法	£ €			$\mathbb C$	
风险预	大气	预测模 型	SI	LAB ℂ	AF	TOX (C	其他 ℂ			
险预测与评价		预测结			毒性终点				m		
评		果			毒性终点》				m		
价	地表水		揖	是近环境敏	感目标		_,到达日	寸间l	1		

	地下水	下游厂区边界到达时间d
	地下小	最近环境敏感目标,到达时间h
		在生产装置及贮存设备中解决"跑、冒、滴、漏"。如使用密闭容器;发现容
重点	风险防范措	器管道泄漏,及时修复;泄漏的局限化,当生产贮存中一旦泄漏时,为不使物
	施	质扩散, 应把生产贮存场所地面连成不渗透的结构。 危险废物贮存于单独的密
		闭库房,该储存区设有符合要求的标志,库房防渗、防漏。
评价	·结论与建议	本项目在采取报告中提出的相应风险防范措施后,环境风险可接受。
,,	// ** >t / . >t=	

注: "℃"为勾选项, "___"为填写项

的有限了。建设项目环评审批基础信息表

	填表单	位(盖章):			设 行吉林省 齐 行		填表人(签字):			项目经办	(公字):	
		项目名称	中征	林省分行培训中心	《党校》与图案管理中 建设项目	心一期锅炉					a水供应的3台2t/h燃气锅如	中,更换为2台3t/h燃
		项目代码1			1 (1/2)		建设内容	亨、规模	锅炉和2台1t/h燃气锅炉 建设规模;改造2台3t/h燃气锅炉和2台1t/h燃气锅炉h燃气锅炉及相应输机			
		建设地点	长着	等 沙月高新技术产业开发区操业大街与永顺路交汇处			EXAMPLE PARELLOS ITAM CHAN THE LITTLE WAS A MAN THE WAS A CONTRACTOR OF THE CONTRACT					
		项目建设周期 (月)					计划开	工时间				
		环境影响评价行业类别		热力	生产及供应业		预计投	产时间				
建设		建设性质		2	女、扩建		国民经济	行业类型2		76 🖠	热力生产及供应业	
项目	Ð	現有工程排污许可证编号 (改、扩建项目)			1		项目申	请类别			新申项目	
		规划环评开展情况			不需开展		规划环识	平文件名			1	
		规划环评审查机关			1		规划环评审	查意见文号			1	
		建设地点中心坐标'(非线性工程)	经度	125.414434	纬度	43.766537	环境影响评	价文件类别		Ð	「境影响报告表	
	建	设地点坐标 (线性工程)	起点经度		起点纬度		终点经度		终点纬度		工程长度 (千米)	
		总投资 (万元)			200.00		环保投资	(万元)	2.	00	所占比例(%)	1.00%
	'单位名称		中国银行	吉林省分行	法人代表	王果		单位名称			证书编号	
建设单位	统一社会信用代码 (组织机构代码)		91220101550476927N		技术负责人	何经理	评价 单位	环评文件项目负责人			联系电话	
		通讯地址	长春市西安大路699号 联系电话		17519118139		通讯地址					
		V Shi ikka	现有工程 本工程 (已建+在建) (拟建或调整变更)			总体工程 (已建+在建+拟建或调整变更)		排放力量				
		污染物	①实际排放量 (吨/年)	②许可排放量 (吨/年)	③预测排放量 (吨/年)	④"以新带老"削减量 (吨/年)	⑤区域平衡替代本工程 削减量 ⁴ (吨/年)	⑥预测排放总量 (吨/年)	⑦排放增减量 (吨/年)	排放方式		
		废水量(万吨/年)								〇不排放		
污		COD								◉间接排放:	② 市政管网	
染 物	废水	氨氮									□ 集中式工业污水处理	
排		总磷								○直接排放:	受纳水体	
放		总氮								1		
量		废气量(万标立方米/年)									/	
		二氧化硫	0.3000		0.0920	-0.2208		0.0920	-0.2208		/	
	废气	氮氧化物	0.4800		0.4300	-0.0500		0.4300	-0.0500		/	
		颗粒物									1	
		挥发性有机物										
			响及主要措施		名称	级别	主要保护对象 (目标)	工程影响情况	是否占用	占用面积 (公顷)	生态防	5护措施
目涉及	保护区	自然保护区					/			1	□ 避让□ 减级 □ 衤	卜偿 □ 重建 (多选)
风景名		饮用水水源保护区					1				□ 遊让□ 减缓□ 衤	
情况	5	饮用水水源保护区					1				□避让□减级□衤	
		饮用水水源保护区(地下) 风景名胜区									Second 1	ト偿 □ 重建 (多选)

注: 1、同级经济部门审批核发的唯一项目代码

^{2、}分类依据: 国民经济行业分类(GB/T 4754-2011)

^{3、}对多点项目仅提供主体工程的中心坐标

^{4、}指该项目所在区域通过"区域平衡"专为本工程替代削减的量

^{5, 7=3-4-5, 6=2-4+3}

长春市环保局净月高新技术产业开发区建设项目环境影响评价备案表

(2019年)第15号

项目名称:中行吉林省分行培训中心(党校)与档案管理中心一期锅炉建设项目

建设单位:中国银行吉林省分行

拟建位置:长春净月高新技术产业开发区聚业大街与永顺路交汇处

联系地址: 长春市西安大路 699号

邮编: 130000

联系人: 何经理

(办):

(手机): 17519118139

建设内容:将原有3台2t/h燃气锅炉改造为2台3t/h燃气锅炉,并新建2个1t/h燃气

锅炉

环评类别:环境影响报告表

提交时间: 2019年7月

环评编制单位: 吉林省龙桥辐射环境工程有限公司

联系人: 孙辅俊

(手机): 15144191218

环境数据监测或认证: 现有监测数据

其他事项:

经办人: 18 子》

宙核人:

M322

2019年6月25日

长环净建(表)[2012]63号

- 一、项目位于净月开发区聚业大街以西,聚业西街 以东,丁二十二路以南,规划用地面积 48440 平方米, 规划建筑面积 32700 平方米, 总投资 24439.36 万元, 建设档案楼、综合楼、宿舍楼及有关配套设施。根据报 告表的结论,同意实施中行吉林省分行培训中心(党校) 与档案管理中心一期建设项目。
- 二、项目在设计和建设过程中应做好以下环境保护 工作。
- 1. 冬季取暖及生活热水等用热同意安装 3 台 2 吨/ 小时燃气锅炉,锅炉烟气须达标排放。
- 2. 食堂废水须经隔油处理满足 CJ3082-1999 《污水 排入城市下水道水质标准》排入市政排水管网。
- 3. 食堂油烟须经净化处理满足 GB18483-2001 《饮 食业油烟排放标准》经独立排烟道高空排放。
- 4. 固体废物须分类收集,妥善外运处理,避免造成 二次污染。
- 5. 对风机等噪声源须采取降噪、减噪措施,使厂界 噪声满足 GB12348-2008《工业企业厂界环境噪声排放 标准》 I 类标准。
- 三、项目竣工后,须按规定程序经我局验收合格后 方可正式投入使用。

经办: 本莹

11月24日

2201002012B14988

电子监管号:

国有建设用地使用权出让合

中华人民共和国国土资源

中华人民共和国国家工商行政管理总局

П

国有建设用地使用权出让合同本合同双方当事人: 超讯地址: 长春市绿园区普阳街 3177号 ; 邮政编码:	00回催心:	(
	国有建设用地使用水	又出让合同		
双方当事人:				
 : 长春市国土资源局 : 长春市国土资源局 : 长春市風区 普阳街 : 中国银行股份有限公司 : 中国银行股份有限公司 : 中国银行股份有限公司 	本合同双方当事人:			
1址: 长春市绿园区普阳街(石): 中国银行股份有限公司	出让人: 长春市国土资源局			
140: (石: 中国银行股份有限公司 141: 周码:	通讯地址: 长春市绿园区普阳	街 3177 号		
(行: 中国银行股份有限公司 出址: 司码:	即政编码:	,		
(行: 中国银行股份有限公司 中国银行股份有限公司 日本: 是码: 是行:	电话:	;		
(行: 中国银行股份有限公司 中国银行股份有限公司 日本: 是码: 是石:	专 .			
(: 中国银行股份有限公司 but: 高码: 2行:	开户银行:		***************************************	
(二) 中国银行股份有限公司(五) 上(五) 上<l< td=""><td>聚步:</td><td></td><td>James</td><td></td></l<>	聚步 :		James	
通讯地址: / 邮政编码: / 电话: / 传真: / 开户银行: / 账号: /	受让人: 中国银行股份有限公	1		
邮政编码:	通讯地址:			
电话: // (1) 传真: // (1) 开户银行: // (1) 账号: // (1)	邮政编码:			
传真:	电话:			
开户银行:	传真:			
账号:	开户银行:			
	账号:			

第一条 根据《中华人民共和国物权法》、《中华人民共和司法》、《中华人民共和国土地管理法》、《中华人民共和国房地产管理法》等法律、有关行政法规及土地供应政策规及方本着平等、自愿、有偿、诚实信用的原则,订立本合

第二条 出让土地的所有权属中华人民共和国,出让人根 律的授权出让国有建设用地使用权,地下资源、埋藏物不 国有建设用地使用权出让范围。

第三条 受让人对依法取得的国有建设用地,在出让期限 言占有、使用、收益和依法处置的权利,有权利用该土地 建造建筑物、构筑物及其附属设施。

第二章 出让土地的交付与出让价款的缴纳

言四条 本合同项下出让宗地编号为_55-11-15, 宗地总 写 <u>肆万捌仟肆佰肆拾</u>平方米(小写 <u>48440</u>平方米), 其 上宗地面积为大写<u>肆万捌仟肆佰肆拾</u>平方米(小写 <u>48440</u> 士)。

合同项下的出让宗地坐落于 长春净月开发区东至聚业

+	(承ط)国有殊及历地灾历众作沙田站于梁即,由坛中一个一个一里有殊及历地灾后众作沙田站上梁的,由了一十3一
	年,按本合同第六条约定的交付土地之日起算;
	七条 本合同项下的国有建设用地使用权出让年期为
	二)现状土地条件
	周围基础设施达到 /
	一)场地平整达到 自然地面
	顷规定的土地条件:
娅	受让人,出让人同意在交付土地时该宗地应达到本条9
—	5六条 出让人同意在 2012年2 月 16 日前将出让宗地
	五条 本合同项下出让宗地的用途为 科教用地。
	高程平面封闭形成的空间范围。
	让宗地空间范围是以上迷界址点所构成的垂直面和上
	为下界限,高差为_/_米。出让宗地竖向界限见
≤	合同项下出让宗地的坚向界限以_/_为上界限,以
	让宗地的平面界址图见附件 1。
	合同项下出让宗地的平面界址为/;
	尚王内二十一始、 四王深业凶街、 北王 1 一十一路

期自合同签订之日起算。

第八条 本合同项下宗地的国有建设用地使用权出让价款为人民币大写<u>壹仟玖佰陆拾捌万元</u> (小写 1968 万元),每平方米人民币大写<u>肆佰零陆点贰柒</u>元(小写 406.27 元)。

第九条 本合同项下宗地的定金为人民币大写___/_元(小写____/_元),定金抵作土地出让价款。

第十条 受让人同意按照本条第一款第<u>(一)</u>项的规定 向出让人支付国有建设用地使用权出让价款:

- (一)本合同签订之日起___30__日内,一次性付清国有 建设用地使用权出让价款;
- (二)按以下时间和金额分_/_期向出让人支付国有建设用地使用权出让价款。

分期支付国有建设用地使用权出让价款的,受让人在支付第二期及以后各期国有建设用地使用权出让价款时,同意按 ■支付第一期土地出让价款之日中国人民银行公布的贷款利 ■,向出让人支付利息。

第十一条 受让人应在按本合同约定付清本宗地全部出让价款后,持本合同和出让价款缴纳凭证等相关证明材料,申请出让国有建设用地使用权登记。

第三章 土地开发建设与利用

建设项目主要污染物总量控制指标申请表

填报单位(盖章):中国银行股份有限公司吉林省分行

2019 年

月

日

	项目名称	中行吉	中行吉林省分行培训中心(党校)与档案管理中心一期锅炉建设项目									
-	建设单位		中国银行股份有限公司吉林省分行									
2	法定代表人	王果	联	系人	何北川	联系电话	13944008139					
	建设地点		长春净	月高新技	支术产业开发[区聚业大街与永川	顺路交汇处					
	建设性质	新建	新建		业类别	金融业						
	总投资(万元)	200		环保投	资 (万元)	2						

建设项目基本情况

将原采暖和热水供应的 3 台 2t/h 燃气锅炉,更换为 2 台 3t/h 燃气锅炉和 2 台 1t/h 燃气锅炉用于采暖和热水供应,不新建建构物。

水及能源消耗情况

名称	消耗量	名 称	消耗量
水(吨/年)	水(吨/年)		,
燃煤 (吨/年)	燃煤(吨/年)		
燃油 (吨/年)		其 它	天然气 230400m³/a

建设项目预测主要污染物排放情况

主要污染物	产生量(吨/年)	削减量(吨/年)	排放量(吨/年)	排放标准
烟尘				《锅炉大气污染物排放
SO ₂	0. 092	0	0.092	· 标准》(GB13271-2014)
NO _x	0. 43	0	0.43	///// (ODIOZ11 Z014)

污染治理主要工艺及其治理效果:

根据《工业污染源产排污手册(2010年版)》,锅炉烟气量排污系数为 136259. 17m^3 / 万 m^3 -原料, SO_2 排污系数为 0. $02S\text{kg}/\text{万 m}^3$ -原料(S: 参考《天然气》(GB17820-2012)中:"作为民用燃料的天然气,总硫和硫化氢含量应符合一类气或二类气的技术指标。",取含总硫较大的二类气标准值 200mg/m^3), NO_x 排污系数为 18. $71\text{kg}/\text{万 m}^3$ -原料。本项目 2 台 3t/h 和 2 台 1t/h 的燃气锅炉的污染物产生及排放情况见表 1。其所产生

的锅炉烟气经由沿楼体安装高度不低于 8m 且不低于周围 200m 范围内最高建筑物 3m 的排气筒排放,烟气污染物浓度能够达到《锅炉大气污染物排放标准》(GB13271-2014)中大气污染物特别排放限值要求。

表 1 锅炉污染物产生及排放情况

	烟气量	污染物	产生'	情况		排方	女情况
污染源	(m³/a)	名称	浓度	产生量	排放方式	浓度	排放量
		石柳	(mg/m ³)	(t/a)		(mg/m^3)	(t/a)
3t/h锅炉	2943198	NO _x	137	0.4		137	0.4
3 亿/ 11 报列分下		SO_2	29	0.086	다 HF	29	0. 086
1 /1 /2 /2	196213	NO_x	137	0.027	直排	137	0.027
1t/h锅炉		SO_2	29	0.0058		29	0.0058

主要污染物替代削减方案或"以新带老"方案(可附页)

中行吉林省分行培训中心(党校)与档案管理中心一期建设项目环评阶段核算锅炉污染物为 SO_2 : 0. 3t/a, NO_2 : 0. 48t/a。按照 2 倍削减替代的要求,原环评阶段 SO_2 可满足此次替代量要求,剩余 0. 12t/a; NO_2 尚需 0. 38t/a。

本项目大气污染物削减替代指标来自于长春市新园实业有限公司拆除的 $1 \div 0.3 t/h$ 燃煤锅炉形成的削减替代量($SO_24.29 t/a$ 、 $NO_20.52 t/a$),能够满足本项目主要污染物排放量 2 倍削减替代的要求。

环保部门核定的总	建量控制指标(吨/年)	
	烟尘	
环评核算	SO_2	0.092
	NO _x	0. 43
	烟尘	
环保部门核定	SO_2	
	NO_x	

县(市)区环保部门意见:

本项目总量指标为: So, 0.092 t/a, Nox 0.43 t/a。 参量替代指标为:中国银行服务有限公司专标省分行原始 2t/h 化然气锅炉为水斋中新国实业有限公司1台 0.3 t/h 以热煤 锅炉,

检测报告

Test Report

项 目 名 称 中行吉林省分行培训中心(党校)与档案管理中心

Project	一期锅炉改造建设项目声环境质量现状检测
委托单位 Applicant	中行吉林省分行培训中心
测 试 类 别 Type of Test	委托

Ultra Test Technical Service (Jilin) Co., Ltd.

二零一九年六月二十日

析致通标技术检测(吉林)有限公司

Ultra Test Technical Service (Jilin) Co., Ltd.

测试报告

(Test Report)

№:UTTJHJN20190619001

No:0113H3N2019001900	1			1			
项目名称 (Entry Name)			党校)与档 环境质量现	案管理中心一期锅炉 !状检测			
委托单位 (Applicant)	中行	中行吉林省分行培训中心					
采样日期 (Sampling Date)	2019.6.19		月期 Date)	2019.6.19			
检测内容 (Test Contents)		等效连:	续A声级				
检测依据 (Test Method)	GB 3	096-2008	声环境质量	量标准			
检测仪器 (Testing instrument)		多功能噪	声分析仪等	Ē			
检测频次 (Test frequency)	昼	、夜间各	1 次/天,1	天			
天气情况 (Weather Condition)	晴		世期间 に风速	3.3m/s			
(吉林/)	编制人 (Edited by)		王蒙蒙				
检验检测专用章	审核人 (Checked by))	2/5 711				
(Special Seal)	批准人 (Approved by	·)	The				
斯特斯	签发日期 (Issued Date)	2019.6.20				
备注 (Note)							

析致通标技术检测(吉林)有限公司 Ultra Test Technical Service (Jilin) Co., Ltd.

测试报告

(Test Report)

№:UTTJHJN20190619001

序号	采样位置	检测日期	检测项目	测试结果 (Test Result)		
(No.)	(Sampling Location)	(Test Date)	(Test items)	昼间 Leq dB(A)	夜间 Leq dB(A)	
1 #	东侧厂界外1米处			52. 7	43, 1	
▲ 2#	南侧厂界外1米处	2019年	等效连续 A	51. 5	42. 4	
A 3#	西侧厂界外1米处	6月19日	声级	52. 1	42.8	
▲ 4#	北侧厂界外1米处			53. 1	43.7	

附图 检测点位示意图

北↑

▲4#

3#

项目所在地

▲1#

▲2#

附表 气象参数

采样日期	天气情况	气压 (kPa)	气温(℃)	相对湿度(%)	风向
2019.6.19	多云	98.0	23.4	49	西南风

以下空白(Below Blank)

吉林省泽盛科技有限公司

监测报告

编号: JLZS17E030

监测项目: 临河街延长线工程

(临河街既有路南端~净月快速路)

环境空气、地表水、噪声监测

委托单位: 长春城投建设投资有限公司

监测类别: 委托监测

编制日期: 2017年5月21日

计量认证证书

证书编号

经审查, 你机构已具备国家有关法律, 行政法规 规定的基本条件和能力, 现予批准, 可以向社会出具 具有证明作用的数据和结果,特发此证

检测能力见证书附表。

准许使用徵标

发证日期: 2014年10月11日 有效期至: 2017年10月10日 发证机关: 吉林省质量技术监督局

说明

- 1. 本监测报告未加盖吉林省泽盛科技有限公司公章、骑缝章和**近**章无效。
 - 2. 报告涂改无效。
- 3. 委托监测仅对当时工况及环境状况有效,自送样品仅对该样品监测结果负责。
- 4. 如对本报告有异议,请于收到本报告之日起十五日内以书面形式向本监测单位提出,逾期不予受理。

单位名称: 吉林省泽盛科技有限公司

单位地址: 吉林省长春市朝阳区延安大路987号吉煤公司档案馆四楼407室

邮政编码: 130061

电 话: 0431-81705091

传 真: 0431-81705091

电子邮件: zeshengkeji@163.com

泽盛科技

一、监测项目

环境空气: SO₂、NO₂、PM₁₀、CO; 地表水: pH、COD、BOD₅、氨氮、SS 等 5 项; 噪声: 昼间、夜间。

二、监测内容

(1) 环境空气

2017年5月11日至2017年5月17日分别对金色世界湾小区、前十里堡村、西五里桥村、福临花园小区处,4个点位进行连续采样,监测环境空气中SO₂、NO₂、PM₁₀、CO等4项浓度值。

(2) 地表水

2017年5月11日至2017年5月15日对农大支沟、后三家子沟、靠边王沟、靠边王支沟、碱草沟、东南污水处理厂排放口上游1000m、东南污水处理厂排放口下游1000m处进行采样,监测pH、COD、BOD₅、氨氮、SS。地表水采样情况详见表1。

序号 样品状态 -农大支沟 淡黄色、无味、有悬浮物 2 后三家子沟 淡黄色、无味、有悬浮物 3 靠边王沟 淡黄色、无味、有悬浮物 边王支沟 淡黄色、无味、有悬浮物 pH、COD、BOD;、 氨氮、 5 碱草沟 淡黄色、无味、有悬浮物 东南河水处理厂排放口上游 淡黄色、无味、有悬浮物 1000m 东南污水处理厂排放口下游 7 淡黄色、无味、有悬浮物 1000m

表 1 地表水受检样品一览表

(3) 噪声

2017年5月12日对西五里桥村临街第一民房、十里堡村临街第一民房、 福临花园小区 B5 栋(距离道路最近)1 层、福临花园小区 B5 栋(距离道 路最近)7层、福临花园小区B5栋(距离道路最近)14层、福临花园小区B5栋(距离道路最近)21层以上6个点位的昼间、夜间噪声进行现场监测。

三、监测日期

采样日期: 2017年5月11日~2017年5月17日

四、监测仪器

(1) 仪器名称:综合大气采样器

仪器型号: KB-6120

检定日期: 2016年11月1日

检定单位: 青岛市计量技术研究院

(2) 仪器名称: pH 计

仪器型号: PHS-3C

检定日期: 2017年3月18日

检定单位: 长春市计量检定测试技术研究院

(3) 仪器名称:紫外可见分光光度计

仪器型号: V-1200

检定日期: 2017年03月18日

检定单位: 长春市计量检定测试技术研究院

(4) 仪器名称: 生化培养箱

仪器型号: SPX-150BIII

检定日期: 2017年3月18日

检定单位:长春市计量检定测试技术研究院

(5) 仪器名称: 多功能声级计

仪器型号: AWA5688

仪器编号: 00302167

检定日期: 2017年1月16日

检定单位: 吉林省计量科学研究院

五、监测依据

- (1)《环境空气 二氧化硫的测定 甲醛吸收一盐酸副玫瑰苯胺分光光度 法》(HJ 482-2009)
 - (2)《环境空气 氮氧化物的测定 盐酸萘乙二胺比色法》(HJ 479-2009)
 - (3)《环境空气 PM₁₀和 PM₂₅的测定 重量法》(HJ 618-2011)
- (4)《空气和废气监测分析方法》(第四版增补版 2003 年 国家环保总局) 非分散红红外吸收法
 - (5)《水质 pH 值的测定 玻璃电极法》(GB 6920-1986)
 - (6)《水质 化学需氧量的测定 重铬酸钾法》(GB/T 11914-1989)
- (7)《水质 五日生化需氧量(BOD₅)的测定 稀释与接种法》 (HJ 505-2009)
 - (8)《水质 氨氮的测定 纳氏试剂分光光度法》(HJ 535-2009)
 - (9)《水质 悬浮物的测定 重量法》(GB 11901-1989)
 - (10)《工业企业厂界环境噪声排放标准》(GB12348-2008)

六、监测结果

(1) 环境空气

SO₂、NO₂、PM₁₀、CO 监测结果详见表 2。

表 2 环境空气样品监测结果一览表

	监测口别	监测因子		(mg/m ³)		日州园	
点位			2 时	8时	14时	20时	(mg/m ³)
		SO ₂					
	2017.05.11	NO ₂					
金色世界		PM ₁₀		-		-0-14s	Annua
湾小区		СО	0.8	0.8	0.9	0.9	MARKET MARK
	2017.05.12	SO ₂	0.021	0.023	0.026	0.021	0.022
900000000000000000000000000000000000000		NO_2	0.033	0.031	0.035	0.033	0.030

监测	监测日期	监测因子		小时均值	(mg/m³)		· 日均值
点位	III. 127 1-1 791	w w w	2时	8时	14 时	20时	(mg/m ³
		PM_{10}	••				0.064
		CO	0.8	1.2	1.2	1.1	
		SO_2	0.020	0.024	0.025	0.020	0.022
	2017.05.13	NO_2	0.034	0.031	0.035	0.035	0.032
		PM_{10}					0.063
		CO	1.3	1.3	1.3	1.3	
		SO_2	0.021	0.022	0.019	0.022	0.019
	2017.05.14	NO_2	0.034	0.035	0.034	0.033	0.030
	2017.00.14	PM_{10}					0.065
	**************************************	CO	1.1	1.0	1.4	1.2	
	Red-Constitution of Constitution (Constitution (Constituti	SO_2	0.018	0.022	0.026	0.023	0.023
	2017.05.15	NO_2	0.033	0.034	0.034	0.031	0.032
	2017.03.13	PM_{10}					0.064
	Accounts to the second	CO	0.9	1.2	1.2	1.3	
	The state of the s	SO_2	0.020	0.024	0.021	0.019	0.023
		NO_2	0.032	0.033	0.033	0.035	0.034
		PM_{10}					0.061
	***************************************	СО	1.1	1.4	1.1	1.1	
	The Control of the Co	SO_2	0.020	0.022	0.020	0.022	0.021
	2017.05.17	NO_2	0.031	0.034	0.033	0.034	0.032
	2017.03.17	PM_{10}				**	0.061
	and the state of t	CO	1.1	1.1	1.2	1.1	- Marie Carallel
		SO ₂	0.021	0.024	0.028	0.021	0.022
l er er		NO_2	0.037	0.034	0.037	0.034	0.035
上里堡 村		PM_{10}	••		***		0.065
		CO	1.4	1.4	1.2		
	2017.05,12	SO ₂					ak

监测	监测日期			小时均值	直(mg/m³)		日均值
点位	111174 17791		2时	8时	14时	20时	
		NO ₂	0.034	0.037	0.038	0.035	0.037
		PM ₁₀					0.065
To a second seco		CO	1.3	1.3	1.0	1.0	
,		SO ₃	0.021	0.024	0.023	0.023	0.023
	2017.05.13	NO ₃	0.037	0.036	0.035	0.036	0.036
		PM_{i0}	- 34s	***		-	0.065
		CO	1.3	1.4	1.3	1.1	
		SO₂	0.020	0.024	0.023	0.021	0.024
	2017 05.14	NO ₂	0.034	0.034	0.037	0.038	0.035
	2017 03.11	PM ₁₀					0.067
		CO	1.1	1.3	1.3	1.3	****
	2017.05.15	SO ₂	0.020	0.020	0.024	0.021	0.023
		NO ₂	0.036	0.033	0.037	0.038	0.033
		PM ₁₀	10 6 - E	~~			0.064
		CO	1.4	1.1	1.1	1.1	
		SO ₂	0.023	0.024	0.022	0.020	0.024
	2017.05.16	NO ₂	0.035	0.037	0.034	0.034	0.037
		PM ₁₀) (RM		0.065
		CO	1.4		1.1	1.4	AV
		SO ₂					
	2017.05.17	NO ₂					F
	2017.00.17	PM ₁₀					The state of the s
		CO	1.0	1.3	1.2	1.0	
		SO ₂	0.023	0.028	0.024	0.027	0.023
西 五里桥	2017.05.11	NO ₂	0.035	0.036	0.036	0.036	0.037
村	2017.03.11	PM ₁₀					0.068
	The second secon	CO	1.2	1.2	1.1	1.1	

监测 点位	监测日期	监测因子		小时均值	(mg/m ³)		日均	
	m (A) [1 A)	mreaka 1	2 时	8时	14时	20 时	(mg/n.	
		SO ₂	0.024	0.025	0.025	0.024	0.023	
	2017.05.12	NO_2	0.038	0.036	0.038	0.038	0.037	
	2017.05.12	PM_{10}					0.067	
		CO	1.1	1.2	1.1	1,3		
		SO_2	0.024	0.026	0.023	0.025	0.024	
	2017.05.13	NO_2	0.036	0.037	0.037	0.036	0.039	
	2017.03.13	PM_{10}				~~	0.066	
		CO	1.3	1.4	1.3	1.1	1	
		SO_2	0.025	0.026	0.023	0.023	0.025	
	2017.05.14	NO_2	0.035	0.037	0.036	0.036	0.036	
	2017.03.14	PM_{10}			-		0.066	
		CO	1.3	1.2	1.3	1.1	-	
		SO_2	0.025	0.025	0.025	0.026	0.025	
	2017.05 15	NO_2	0.035	0.037	0.035	0.037	0.035	
	2017.03 13	PM ₁₀				***	0.069	
		CO	1.4	1.4	1.1	1.0		
		SO_2	0.024	0.027	0.023	0.027	0.023	
	2017.05.16	NO_2	0.038	0.039	0.037	0.038	0.038	
	2017.05.10	PM_{19}				**	0.066	
		CO	1.3	1.3	1.2	1.2		
		SO_2	0.027	0.026	0.025	0.026	0.024	
	2017.05.17	NO ₃	0.035	0.036	0.037	0.037	0.035	
		PM_{10}	***	144			0.069	
		CO	1.1	1.2	1.3	1.3		
		SO_2	0.024	0.024	0.024	0.024	0.024	
站花园	2017.05.11	NO_2	0.035	0.038	0.037	0.037	0.036	
		PM_{10}				~~	0.068	

监测	监测日期	监测因子	A Appropri	小时均值	(mg/m³)		日均值
点位		mrocked 1	2时	8时	14 时	20时	(mg/m ³)
		CO	1.4	1.4	1.4	1.2	ngan ngan
		SO ₂	0.024	0.025	0.026	0.025	0.026
	2017.05.12	NO ₂	0.037	0.037	0.039	0.035	0.038
	2017.03.12	PM ₁₀	***	West		4.0	0.066
		СО	1.3	1.2	1.3	1.2	na va
		SO ₃	0.027	0.025	0.026	0.025	0.026
	2017.05.13	NO ₂	0.039	0.037	0.039	0.038	0.035
	2017.03.13	PM10				**	0.065
		СО	1.3	1.2	1.2	1.2	TAN TIME
	2017.05.14	SO ₂	0.025	0.027	0.024	0.026	0.024
		NO ₂	0.035	0.038	0.036	0.036	0.036
		PM_{10}	•				0.069
		СО	1.3	1.2	1.2	1.2	
		SO ₂	0.026	0.023	0.025	0.024	0.024
1	2017.05.15	NO ₂	0.035	0.038	0.037	0.039	0.035
distribution of the second of	2017.00.13	PM ₁₀					0.067
annin yanaman ayab		СО					
aller in musical characters		SO ₂	0.026	0.028	0.027	0.027	0.026
William Control of Canada	2017.05.16	NO ₂	0.038	0.035	0.038	0.036	0.035
TOTAL STATE OF THE	2017.00.10	PM ₁₀	00-00-		ander may		0.068
		CO	1.3	1.3	1.2	1.3	-
		SO ₂	0.025	0.026	0.025	0.024	0.024
The second second	2017,05,17	NO ₂	0.036	0.039	0.039	0.038	0.036
Appropries	2017,03,17	PM ₁₀	and and				0.065
		СО	1.1	1.4	1.2	1.3	and the same

(2) 地表水

pH、COD、BOD5、氨氮、SS 监测结果详见表 3。

表 3 地表水样品监测结果一览表 (单位: mg/L pH 无量纲)

					o 1 .	
监测点位	监测		200000 A 900000 A 900000 A 900000 A 900000 A 9000000 A 90000000 A 90000000 A 90000000 A 90000000 A 90000000 A	监测项目		
班例总位	日期	pН	COD	BOD ₅	類類	SS
农大支沟		7.52	42.33	7,12	6.59	115
后三家子沟		7.92	47.62	7.03	6.81	109
靠边王沟	i i	7.42	44.97	7.11	6.64	118
边王支沟	2017.05.11	7.89	42.33	7.09	6.66	121
碳草沟		7.56	50.56	7.02	6.59	126
东南污水处理厂排放口上游 1000m		7.57	60.85	7.34	6.92	131
东南污水处理厂排放口下游 1000m		7.75	42.33	7.02	6.58	114
农大支沟		7.56	39.68	6.98	6.53	106
后三家子沟		7.97	44.97	7.03	6.48	118
靠边王沟		7.39	47.62	7.06	6.61	102
边王支沟	2017.05.12	7.75	42.33	7.10	6.39	113
碱草沟		7.50	39.68	7.05	6.57	123
东南污水处理厂排放口上游 1000m		7.54	55.56	7.37	6.79	135
东南污水处理厂排放口下游 1000m		7.72	39.68	7.00	6.41	110
农大支沟		7.58	47.62	7.05	6.55	106
后三家子沟	1	7.99	50.26	6.99	6.49	111
靠边王沟		7.39	44.97	6.94	6.58	120
边王支沟	2017.05.13	7.85	44.97	7.05	6.52	125
級草沟	10 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	7.55	50.26	7.03	6,43	116
东南污水处理厂排放口上游 1000m		7.54	66.14	7.25	6.84	132
东南污水处理厂排放口下游 1000m	111111111111111111111111111111111111111	7.71	44.97	7.06	6.48	104
农大支沟		7.46	50.26	7.02	6.57	115
后三家子沟	2017.05.14	7.94	44.97	7.09	6.53	119
	100		47.62	7.10	6.64	124

泽盛科技

200		-				
+11	CT : CK 1	1.1	TI	77,71	7E030	
413	- 4 Elm	Town 1	1.1	13	1-11411	
210	ind wells	3 .		11/12	11.17.11/	

First Standard Section 1. The content of the conten					1K口細子: JLZ31/EU30		
边王支沟		7.81	39.68	7.03	6.54	106	
碱 草沟		7.53	47.62	6.95	6.59	101	
东南污水处理厂排放口上游 1000m		7.55	58.20	7.28	6.79	124	
东南污水处理厂排放口下游 1000m		7.70	44.97	7.01	6.34	118	
农大支沟		7.55	42.33	6.97	6.41	105	
· 后三家子沟		8.00	47.62	6.99	6.39	113	
靠边王沟		7.43	42.33	7.02	6.48	126	
边王支沟	2017.05 15	7.92	44.97	7.06	6.50	110	
碱草沟		7.51	50.26	7.01	6.47	117	
东南污水处理厂排放口上游 1000m		7.56	63.49	7.24	6.77	129	
东南污水处理厂排放口下游 1000m	***************************************	7.79	42.33	7.05	6.38	118	

(3) 噪声

昼夜噪声监测结果详见表 4。

表 4 噪声监测结果一览表

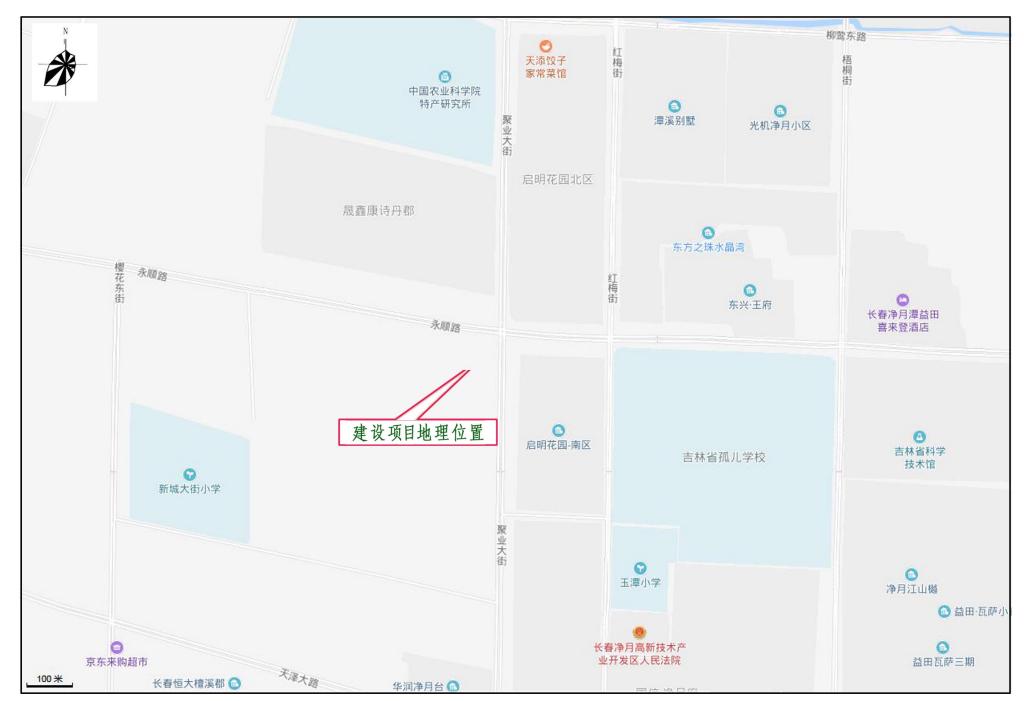
序	号				
-		西五里桥村临街第一民房		45.6	39.2
2	!	前十里堡村临街第一民房		45.2	38.8
3		新胜屯临街第一排民房		46.8	39.5
4		东五里桥临街第一排民房		46.2	38.2
5	1	福临花园小区(距离道路最近)1 层	*	33.3	32.5
6	-	福临花园小区(距离6道路最近)7层	***	32.1	31.8
7		福临花园小区(距离道路最近)14层		34.1	33.2
8		福临花园小区(距离道路最近)21层	2017.05.12	33.1	32.2
9		金色世界湾小区(距离道路最近)1层		35.1	33.2
10		金色世界湾小区(距离道路最近)7层		33.5	32.8
11	10,11,744.00	金色世界湾小区(距离道路最近)14层		36.4	34.8
12		金色世界湾小区(距离道路最近)21层		35.8	33.6
13	-	东安加州风景小区(距离道路最近)1层		34.3	33.8
14	M. Marrier	东安加州风景小区(距离道路最近)7层		34.5	32.8

泽盛科技

报告编号: JLZS17E030

序号	监测点位	监测日期	昼间 dB (A)	夜间 dB (A)
15	东安加州风景小区(距离道路最近)14层		34.6	33.5
16	东安加州风景小区(距离道路最近)21层		33.5	32.5

(以下空白)


报告编制人:

授权签字人:

事 核 人:

签发日期:

7年了月21日

附图1 项目地理位置示意图

附图2 项目平面布置及周边环境情况示意图 比例尺;1:50000